Socio-economic drivers of land-use change at several sites in the Plum Island Estuary LTER region

By Gil Pontius

Main Points

- PIE-LTER serves as the inspiration to create general statistical and modeling methods that can be applied elsewhere to study land change.
- These methods are incorporated into accessible GIS software.
- NSF-funded HERO program is designed for cross-site comparison of land change.
- Quality control on data and metadata is key.
- Some of our best work is done with REUs.
- We are fully integrated with policy makers.

Plum Island Estuary LTER

Research Experience for Undergraduates (REU)

Towns of Ipswich Watershed

Forest Change 1971 - 1999

Wall of Equations

Perfect

d Perfect I Stratum

Simulated Grid Cell

Information of Location

Simulated Stratum

9

$\sum_{j=1}^{J} MIN(R_{j})$,	$\frac{1}{J})$
j=1		J

$$\frac{\sum_{d=1}^{D} W_{d} \cdot \left[\sum_{j=1}^{J} MIN(R_{d,j}, E_{d,j}) \right]}{\sum_{d=1}^{D} W_{d}}$$

$$\frac{\sum_{d=1}^{D} \sum_{n=1}^{N} W_{dn} \left[\sum_{j=1}^{J} MIN(R_{dnj}, A_{dnj}) \right]}{\sum_{d=1}^{D} \sum_{n=1}^{N} W_{dn}}$$

$$\frac{\sum_{d=1}^{D} \sum_{n=1}^{N} W_{dn} \left[\sum_{j=1}^{J} MIN(R_{dnj}, E_{d \cdot j}) \right]}{\sum_{d=1}^{D} \sum_{n=1}^{N} W_{dn}}$$

$$\sum_{d=1}^{D} \sum_{n=1}^{N} W_{dn} \left[\sum_{j=1}^{J} MIN(R_{dnj}, \frac{1}{J}) \right]$$

$$\sum_{d=1}^{D} \sum_{n=1}^{N} W_{dn}$$

$$\sum_{j=1}^{J} MIN(R_{..j}, S_{..j})$$

$$\frac{\sum_{d=1}^{D} W_{d} \cdot \left[\sum_{j=1}^{J} MIN(R_{d,j}, S_{d,j}) \right]}{\sum_{d=1}^{D} W_{d}}$$

$$\frac{\sum_{d=1}^{D} \sum_{n=1}^{N} W_{dn} \left[\sum_{j=1}^{J} MIN(R_{dnj}, S_{dnj}) \right]}{\sum_{d=1}^{D} \sum_{n=1}^{N} W_{dn}}$$

$$\frac{\sum_{d=1}^{D} \sum_{n=1}^{N} W_{dn} \left[\sum_{j=1}^{J} MIN(R_{dnj}, S_{d \cdot j}) \right]}{\sum_{d=1}^{D} \sum_{n=1}^{N} W_{dn}}$$

$$\frac{\sum_{d=1}^{D} \sum_{n=1}^{N} W_{dn} \left[\sum_{j=1}^{J} MIN(R_{dnj}, S_{-j}) \right]}{\sum_{d=1}^{D} \sum_{n=1}^{N} W_{dn}}$$

$$\sum_{j=1}^{J} MIN(R_{..j}, R_{..j})$$

$$\frac{\sum_{d=1}^{D} W_{d} \cdot \left[\sum_{j=1}^{J} MIN(R_{d.j}, F_{d.j}) \right]}{\sum_{d=1}^{D} W_{d}}$$

$$\frac{\sum_{d=1}^{D} \sum_{n=1}^{N} W_{dn} \left[\sum_{j=1}^{J} MIN(R_{dnj}, B_{dnj}) \right]}{\sum_{d=1}^{D} \sum_{n=1}^{N} W_{dn}}$$

$$\frac{\sum_{d=1}^{D} \sum_{n=1}^{N} W_{dn} \left[\sum_{j=1}^{J} MIN(R_{dnj}, F_{d \cdot j}) \right]}{\sum_{d=1}^{D} \sum_{n=1}^{N} W_{dn}}$$

$$\frac{\sum_{d=1}^{D} \sum_{n=1}^{N} W_{dn} \left[\sum_{j=1}^{J} MIN(R_{dnj}, R_{..j}) \right]}{\sum_{d=1}^{D} \sum_{n=1}^{N} W_{dn}}$$

Land Cover Change 1971 - 1999

Simulated and actual deforestation 1985-1991

Simulated versus actual deforestation 1985-1991

1951 Forest by town

1951 Forest (54% correct) **Non-Forest** 10000.00 **Forest**

1951 Forest (87% estimated correct)

1951 Forest (87% estimated correct)

1951 Forest (87% estimated correct)

GEOMOD & MULTIVALIDATE in IDRISI32

Water quality versus land indices

Human Environment Regional Observatory

HERO Study Areas and LTER sites

REUs publish in professional peer-reviewed

scientific journals

Massachusetts Watersheds

HERO-CM Large Window

Large Study Area Watershed Map

HERO Small Window

Small Study Area Watershed Map

Forest Change 1971-1999

Deforestation 2001

Former Forest 2002

Imminent Land Change?

Conservation Commission Meeting

Wetland?

Ken Chin's Parking Lot 1

Ken Chin's Parking Lot 2

Ken Chin's Parking Lot 3

After

Before

Brownfields in Commercial/Industrial Areas

Known Brownfields (Large Study Area)

HEROs Working with the Mayor

Central Mass 1971

Central Mass 1999

Centre County PA 1972

Centre County PA 2002

Kansas 1985

Kansas 2001

Arizona 1986

Arizona 1999

Main Points

- PIE-LTER serves as the inspiration to create general statistical and modeling methods that can be applied elsewhere to study land change.
- These methods are incorporated into accessible GIS software.
- NSF-funded HERO program is designed for cross-site comparison of land change.
- Quality control on data and metadata is key.
- Some of our best work is done with REUs.
- We are fully integrated with policy makers.