Geological Remote Sensing in the LTER Network: Terra Cognita?

William L. Stefanov

Geological Remote Sensing Laboratory Department of Geological Sciences Arizona State University, Tempe, AZ

email: will.stefanov@asu.edu

Overview

- General Geoscience/LTER Geoscience
- Site Examples (CAP, Andrews, VCR, Jornada)
- Urban Geoscience and Remote Sensing
- Published Strengths
- Summary

ASTER visible-near infrared mosaic of the central CAP LTER site, 19-Sep-00

Geological Remote Sensing

Geologic Mapping

bedrock, structure

Economic Resource Assessment

mineralogy, structure, vegetation

Hazard Assessment

volcanoes, earthquakes, floods

Land Cover Mapping/Change

patch dynamics, urbanization, vegetation

Geomorphology/Landscape Characterization

particle size, mineralogy, topography

Soil Mapping

agriculture, soil moisture, soil development

Hydrology

drainage networks, vegetation, land cover, floods

Surface Fluxes

•albedo, emissivity, surface temperature, biological parameters

Environmental Monitoring

air quality, anthropogenic contaminants, subsidence

Central Arizona-Phoenix LTER

Investigation of hillslope geomorphic processes using TIR image (TIMS) and lab spectroscopy

- -similar degrees of soil development and transport throughout study range on urban fringe
- -insight into surface particle size controls on pediment development
- -useful baseline for study of human alteration of geomorphic processes (upcoming MASTER flights)

Central Arizona-Phoenix LTER

Determination of alluvial fan aggradation history using NSO01 data and cosmogenic nuclide dating

- -determination of periods of aggradation at 1.5-1.0 Ma and 0.8-0.5 Ma separated by stability and incision
- -provides insight into regional climatic controls on landscape development in urban fringe area
- -links geomorphic surface and history to biotic communities
- -techniques useful for flood hazard mapping

NS001 image mosaic highlighting variations in alluvial fan surface mineralogy (left); geologic map derived from imagery and field mapping (right)

Image courtesy of Sarah Robinson, USGS; and Ramon Arrowsmith, Dept. of Geological Sciences, ASU

Central Arizona-Phoenix LTER

Neighborhood-scale microclimate study using Landsat, ASTER, and field data

-goal of study is to assess the potential role of human social patterns and choices on microclimate

-initial studies indicate no clear correlations between social indicators and biogeophysical parameters (surface temperature, vegetation density, air temperature, humidity)

-ongoing work includes analysis of historic Landsat data, climate records, and demographic trends to reveal presence/absence of social/physical lags (IGERT seminar)

T15 Neighborhood Histogram ligh: 45.2500 Temperature

> Surface temperature map derived from ETM+ data (above); collection of field climatic data (left)

Andrews LTER

Vegetation cover and disturbance mapping using Landsat data

- -various vegetation and land cover attributes mapped using Thematic Mapper, DEM, GIS, aerial photographs, and field data
- -regression models used for multi-temporal image classification to remove radiometric variations and produce continuous data values
- -produced a cost-effective means of mapping various vegetation types and parameters, and assessing disturbance regimes from 1972-1995
- -useful for geomorphic and hydrologic studies

Landsat scene coverage for western Oregon; image courtesy of Warren B. Cohen, USDA

Andrews LTER

Initial unwegetwised Mapsification

Virginia Coast Reserve LTER

Maps and aerial photos used in concert with geomorphologic studies to obtain landscape history for Hog Island

- -northern edge of island accreting
- -southern edge of island eroding

Virginia Coast Reserve LTER

Use of aerial photos to assess change in Hog Island salt marsh boundaries due to 3.5 mm/yr sea level rise

Image courtesy of Bruce Hayden & John Porter, Dept. of Environmental Science, U Virginia

Virginia Coast Reserve LTER

Study of elevational control on use of dunes and swales by colonizing shrubs on Hog Island

- -individual shrub locations determined via 1m/pixel aerial imagery
- -precise elevational data obtained using LIDAR (Light Detection And Ranging);15 cm vertical, 5 m horizontal accuracy
- -statistical analysis of known vs. random shrub locations indicates that shrubs prefer dune sites

Known shrub locations
Random locations

Jornada LTER

Images courtesy of Tom Schmugge, USDA

Comparison of ASTER and MODIS surface emissity and temperature

- -comparison of sensors on board Terra satellite key for use of data in multiscale studies
- -agreement between two sensors is excellent
- -MODIS data products of immediate use for biological, ecological, and surface energy balance studies (NPP, LAI, vegetation indices, albedo, emissivity, ET)

Urban Geological Remote Sensing

Opportunities for geoscience remote sensing in urban LTERs

- detail spectral characterization/analysis of urban/exurban materials (climatology, land cover change, surface fluxes, disturbance)
- urban topography and subsidence studies using radar and lidar
- studies of humans as geologic agents (alteration of surficial geomorphic and hydrologic processes)
- environmental and geologic hazard monitoring (air quality, expansive soils, contaminants)

MASTER thermal infrared false-color image of Tempe Butte-ASU highlighting surficial material variations (both natural and built)

Fugitive Dust Processes

Summary

- Many LTER sites doing geoscience-related remote sensing primarily for land cover, vegetation, and hydrologic research
- LTER database returns 16 publications with geological remote sensing keywords
- Utilization of a wide range of both airborne and satellite sensors (and aerial photography)
- •New super and hyperspectral sensors, and active sensor data (radar/lidar), should stimulate more detailed and quantitative studies of surficial processes and ecosystem responses
- •LTER network presents an ideal locus for geologic research due to the volume of biogeophysical data available
- New sensors offer particular opportunities for increased urban geoscience