Global change and arctic systems

Question

How can long-term research inform our understanding of how terrestrial arctic carbon balance will respond to climate warming?

Mean global surface T anomalies, 2005

http://www.giss.nasa.gov/research/observe/surftemp/

Mean arctic surface T anomalies

Chapin et al. 2005

Global Soil Carbon Storage

 Carbon Storage
 1-50
 51-100
 101-150

 metric tons / ha
 151-300
 > 300
 No data

- · 40% of the global soil C pool resides in high latitude ecosystems.
- High latitude soil C pool ≈ 0.5 \times atmospheric C pool.
- Warming will increase decomposition of soil organic matter and release of soil C.

Satellite images show evidence of "arctic greening"

Shrub density has increased

Figure 1. Increasing abundance of shrubs in arctic Alaska. The photographs were taken in 1948 and 2002 at identical locations on the Colville River (68° 57.9' north, 155° 47.4' west). Dark objects are individual shrubs 1 to 2 meters high and several meters in diameter. Similar changes have been detected at more than 200 other locations across arctic Alaska where comparative photographs are available.

Photographs: (1948) US Navy, (2002) Ken Tape.

Strum et al. 2005

Forests are expanding

year (end of 10-year period)

Soil C:N = 15

Plant C:N = 30-45+

Store more C in plants than soil

"Historic" fertilization experiment

- 10 gN and 5 gP·m⁻².
 yr⁻¹ added to
 replicate plots of
 tussock tundra since
 1981
- Vascular ANPP and total above ground biomass by destructive harvests, 1981-1995
- Total ecosystem C and N pools, 2000

Effect of fertilization on aboveground net primary productivity

Cumulative vascular ANPP over 20 years (g m⁻²): C=2537 F=5506

Simulated Change in C Storage

<u>∆C pools</u>	
Year 3	$(g C/m^2)$
Plant C	80
Soil C	19
Ecosystem C	99
Year 9	
Plant C	261
Soil C	212
Ecosystem C	473

Ecosystem C and N pools after 20 years

 Net decrease in total ecosystem C storage of ~2 kg C/m²

 No net effect on total N storage despite addition of 200g N/m²

Ecosystem C and N pools after 20 years

 Plant and surface soil C and N pools increased

BUT

 Deep organic and mineral soil C and N pools <u>decreased</u>

Fertilization caused a net loss of 2 kg C/m² over 20 years...How?

C storage = inputs - outputs = Plant NPP - decomposition

Decreased production

or

Increased C loss?

Fertilization reduced deep soil C pools by:

- H1. Decreasing total production through
 - a. Decreased root allocation
 - b. Decreased moss production
- H2. Increasing decomposition/C loss through
 - -a. Increased litter quality
- <30% b. Changes in the environment for decomposition
 - + c. Alleviation of nutrient limitation to decomposers
 - + d. Changes in belowground community dynamics

How does this experiment compare to climate warming?

- · Gross N release by warming may be similar in magnitude
 - R_h = total plant production = 150 g C m⁻² yr⁻¹
 - Q_{10} of $R_h = 2$
 - SOM C:N = 26
 - Then a 3 7° C increase in T = 7 9.4 g N m⁻² yr⁻¹

How does this experiment compare to climate warming?

· Gross N release by warming may be similar in magnitude

 Naturally occurring shrub tundra has less soil C despite more biomass and ANPP

 Other signals of climatic change have positive effects, making interactive amplification of C loss likely

The "species" removal experiment

Treatments: removal with and without fertilization

Removals: Betula nana

Ledum palustre

Betula and Ledum

Moss

Betula, Ledum, and Moss

All deciduous shrubs
All canopy shrubs

Figure 5. A shrub patch that has created a snowdrift in and downwind of the patch. The snow on the tundra behind the patch was about one-fifth as deep as the drift. Photograph: Matthew Sturm.

Strum et al. 2005

Acknowledgements

Collaborators:

Ted Schuur, University of Florida
Syndonia Bret-Harte, University of Alaska Fairbanks
Gus Shaver, Marine Biological Laboratory
Terry Chapin, University of Alaska Fairbanks
Jim Laundre, Marine Biological Laboratory
The many pluckers and grinders in my lab...

Funding sources:

Arctic LTER
NSF DEB and OPP
Mellon Foundation