Climate Change & Marine Biogeochemical Modeling from Local to Global Scales

Scott Doney (WHOI & Palmer LTER)

NSF Forum: Understanding Climate Change Through Long-Term Ecological Research (March 2011)

Outline

- -Climate change trends on West Antarctic Peninsula (WAP)
- -Local & regional food-web impacts
- -Global primary production & plankton community structure trends

Climate Trends along Western Antarctic Peninsula

- Rapid warming along WAP
 ~5x global average
- Reduced sea-ice cover & expanding seasonal ice free conditions

Palmer LTER Study Region along the WAP: 300 x 700 km: Process Studies Embedded in a Long-Term Observational Context

Ecological Responses to Retreating Sea-Ice

Penguin Populations near Palmer Station Adélies declining, Gentoos and Chinstraps invading and increasing

Montes et al. Science (2009)

Bill Fraser

Inverse Model: example of a solved system

Primary production, input

Constrained compartment

Constrained through other compartment

Model estimated flows, export & respiration

Legend

gpS: primary production small, phS: phytoplankton small, gpL: primary production large, phL: phytoplankton large, mic: microzooplankton, kri: krill, sal: salp, plg: fish (pleuragramma sp.), pen: penguin (Adelie sp.), ext: export, det: detritus, doc: DOC, bac: bacteria

Observed Trends

Primary Production (mmolC m⁻² d⁻¹)

Phytoplankton structure (% large cells)

Model Estimates

Transfer from compartment as % primary production at North station

-

Ocean-Ice Hindcast Simulation (CESM1)

-0.24

60°W

0.00

60°W

75°W

Biogeochemical Impacts of Ice Retreat

Spatial patterns from multi-model ensemble (stippled regions of large contemporary errors)

Phytoplankton Community Structure

Marinov et al. Biogeosciences (2010); Marinov in prep.

Conclusions & Future Directions

- -Rapid regional warming along Antarctic Peninsula driven by interactions with winds & ACC (upwelling)
- -Marine & terrestrial ecosystems responding at all trophic levels
- -Impacts on key biogeochemical process: productivity, plankton composition, export & air-sea CO₂ flux
- -Lessons applicable to regional & global questions

-Advances or delays in life cycle, disrupting phenological coupling between trophic levels

Murphy et al. *Prog.*Oceanogr. Submitted
ICED Southern Ocean
Food Web Modeling
Workshop

Climate Change & Marine Biogeochemical Modeling from Local to Global Scales

Scott Doney (WHOI & Palmer LTER)

NSF Forum: Understanding Climate Change Through Long-Term Ecological Research (March 2011)

Acknowledgements

WHOI Modeling Group:

S. Sailley, I. Lima, I. Marinov (U. Penn) & H. Moeller (Stanford)

Palmer Team:

H. Ducklow, B. Fraser, D. Martinson, O. Schofield, S. Stammerjohn, D. Steinberg, K. Baker; other past & present members

Community Climate/Earth System Model:

Keith Lindsay, Keith Moore & BGC Working Group

NSF & NCAR

(funding & computer time)

-Rising CO₂; declining pH & CaCO₃ saturation state -Polar waters undersaturated for aragonite by mid-century

Ocean Acidification

Doney et al. *Ann. Rev. Mar. Sci.* 2009 Dore et al. *PNAS* 2009; Steinacher et al. *Biogeosciences* 2009

Sea-Air pCO2 Trends

- -Rising atmospheric anthropogenic CO₂
- -Stronger westerly wind stress & upwelling
- -Positive sea-air pCO₂
- => weaker CO₂ uptake

Le Quere et al. Nature Geosciences (2009) F

Figure 3 | Trends in the observed partial pressure of CO₂ for ocean minus air, for 1981-2007. The observed trends are calculated by fitting a

Topological food web

- •"who eats who"
- primary food sources
- export pathways
- Physiological constraints
- maximum rates
- growth & assimilation efficiency
- Site-specific data
- Palmer survey grid
- •biomass & flow data
- respiration rates

Internally consistent food-web

- match available data
- mass conservative
- steady-state

Constraints on other stocks & flows

- unmeasured parts of the ecosystem
- minimization criteria
- Monte-Carlo methods to give error bounds

Coupled Ocean-Atmosphere Model: CCSM-3 21st Century Projections

Ecological Responses to Retreating Sea-Ice

Decadal Change in Surface Chlorophyll

Penguin Populations near Palmer Station

Adélies declining, Gentoos and Chinstraps invading and increasing

Bill Fraser Ducklow et al. (in press)

