

New Mexico Elevation Gradient

Juniper savanna 1926 m

Eddy covariance – ecosystem carbon fluxes

Eddy covariance – ecosystem carbon fluxes

Partition NEE into component fluxes

GPP: total carbon in

R_e: total carbon out

GPP = gross primary productivity R_e = Ecosystem respiration

Spatial heterogeneity in SW

Biomes represented by the NMEG

landcover data from the Southwest Regional Gap Analysis Project (SWReGAP)(http://earth.gis.usu.ed u/swgap).

Contributions to Ameriflux, FLUXNET

FLUXNET synthesis 2007

Contributions to NEON

NM Elevation Gradient data sets

- Tower-based open-path eddy covariance (since 2007)
 - Net Ecosystem Exchange of carbon , Latent Heat flux, Sensible Heat flux
- Carbon pools (2007, 2010)
 - aboveground biomass, leaf area index, course/fine woody debris, litter, soil
- Micrometeorological variables
 - Air T, RH, Net radiation and components, PAR, Soil T and H₂O content profiles
- Physiology
 - Leaf-level gas exchange, soil, foliar and bole respiration, sap flow, soil CO₂, chlorophyll fluorescence
- Detailed ecosystem structure and function
 - Airborne LiDAR (summer 2011), QuickBird (4 acquisitions, 2011-2012)
 - NDVI and PRI sensors

Climate dependence of carbon fluxes and storage

Anderson-Teixera et al. GCB, 2011

Seasonal Patterns – Carbon uptake

Open bars = 2007

Closed = 2008

Response curves to temperature, soil water content

Total nighttime ecosystem respiration rates (g C m⁻² night⁻¹)

Total daily C uptake (g C m⁻² day⁻¹)

Climate change in the SW

Temperature

Predicted temperature increase of 3 - 4 C 18 models used A1B emissions storyline Gutzler 2007

Precipitation

19 models used A1B emissions storyline Seager et al., 2007

Predicted change to NM terrestrial ecosystem carbon balance as mean annual temperature (MAT) increases

A 4°C increase in MAT could reduce annual C sequestration by ~56 Tg CO₂ y⁻¹

- 16% annual US residential emissions
- 8% annual US industrial emissions
- 3% of US transportation emissions

Anderson-Teixeira et al. (GCB; 2011)

Importance of long term research

Long term continuous measurements of NEE will:

- ☐ Represent the full range of climate variability
- ☐ Measure the effects of disturbance on ecosystem function

Response surfaces should change with climate and disturbance

Change in:

Temperature precipitation regime cloud cover etc......

Extensive piñon mortality in N. NM in 2002 Photo credit: Dr. Craig Allen, USFS

Disturbance and long term research

Fire

Spruce budworm

Extreme cold

Piñon mortality in the SW US

Large scale manipulation experiment

Second PJ woodland < 5km from control Installed Feb 2009 - piñon girdled Sept 2009

300 m x 300 m

Overall Conclusions

- 1. NMEG valuable network for examining C dynamics in semi-arid ecosystems in the SW US
- 2. Spatial heterogeneity in SW should not be ignored. Semi-arid biomes vary distinctly in C sink strength and sensitivity to temperature and precipitation
- 3. We are likely to see a decrease in C sequestration throughout the region if temperature increases and precipitation decreases.
- 4. Long-term monitoring of these sites crucial to accurately predict how C dynamics will respond to changes in climate and/or disturbance
- 5. More complex ecosystem models required (currently using SIPNET, CLM)

Acknowledgements

People

Litvak Lab

Andy Fox, Krista Anderson-Teixera, Leo Stoscheck, Dan Krofcheck, John DeLong, Daniel Brese, Andy Hawk, Sarah Hicks, Alek Chakroff, Shaila Cockar, Alexandra Reinwald (REU), Dena Smith, Emma Elliot Smith, Cecilia Payan, Scott Rossol, Tallie Segel

UNM

Renee Brown, Don Natvig, Cliff Dahm, Will Pockman, Scott Collins, James Cleverly, James Thibault, Stephen Teet, Barbara Kimball, Jim Gosz

SAHRA, CZO, U of Arizona, Valles Caldera sites

Paul Brooks, Scott Gilmore, John Petti, Jon Chorover, Peter Troch

Sevilleta Bigfoot sites

Shirley Kurc and Eric Small

Land owners/managers

Seven Up Seven Down Ranch, Heritage Land Institute, Sevilleta LTER, Valles Caldera (Bob Parmenter)

Funding sources

Predicted change to NM terrestrial ecosystem carbon balance as mean annual temperature (MAT) increases

Biomes account for 57% of area in NM

A 4°C increase in MAT would reduce C sequestration by ~56 Tg CO₂ y⁻¹

- 16% annual residential emissions
- 8% annual industrial emissions
- 3% of transportation emissions

Anderson-Teixeira et al. (GCB; 2011)

Pulse fraction

