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New Mexico Elevation Gradient
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Eddy covariance — ecosystem carbon fluxes

CO, uptake

(Gross primary

productivity, GPP) CO, release
(autotrophic
respiration)

CO, release
(heterotrophic + autotrophic
respiration)

C loss:

Leaching

Herbivory
= Fire, etc..




I Eddy covariance — ecosystem carbon fluxes

N Net ecosystem exchange (NEE) = Net CO,
uptake
T\ g C m~2 time! (day, month, yr)
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Partition NEE into component fluxes
GPP: total carbon in
R, : total carbon out

GPP = gross primary productivity
R. = Ecosystem respiration




Spatial heterogeneity in SW
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Pinon-Juniper Woodland
Juniper Savanna
Creosote Shrub

C4 Grassland
Flux Tower

landcover data from the Southwest
Regional Gap Analysis Project
(SWReGAP)(http://earth.gis.usu.ed

u/swgap).
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Presentation Notes
2) Biomes are not only well represented in NM, but they are widespread across the SW


Contributions to Ameriflux, FLUXNET
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3) This network of towers is making a really valuable contribution to the network of towers around the world.

As you can see here there are towers on every continent, except Antarctica as far as I know, but as of 2007, there was a real lack of towers in hot dry biomes.     The towers in the NMEG filling  a fairly large hole in terms of land covers represented.  


Contributions to NEON
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NM Elevation Gradient data sets

e Tower-based open-path eddy covariance (since 2007)
— Net Ecosystem Exchange of carbon, Latent Heat flux, Sensible Heat flux

e Carbon pools (2007, 2010)

— aboveground biomass, leaf area index, course/fine woody debris, litter, soil

* Micrometeorological variables
— Air T, RH, Net radiation and components, PAR, Soil T and H,0 content profiles
* Physiology

— Leaf-level gas exchange, soil, foliar and bole respiration, sap flow, soil CO,,
chlorophyll fluorescence

* Detailed ecosystem structure and function

— Airborne LiDAR (summer 2011), QuickBird (4 acquisitions, 2011-2012)
— NDVI and PRI sensors
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In each site, we have open-path tower based flux measurements that are being measured and processed consistently across the gradient
We have good estimates of above ground biomass, LAI, fine and course woody debris, litter and soil organic matter through plot surveys
And a handle on the component fluxes through leaf level gas exchange measurements at some sites, soil respiration at all sites, sap flow and soil CO2 probes and automated chambers at some sites


® Climate dependence of carbon fluxes and storage

Anderson-Teixera et al. GCB, 2011
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Presentation Notes
Left figure… shows cumulative annual fluxes across the elevation gradient.     Annual NEP, GPP and Reco are plotted here for each site as a function of MAT and MAP, so we move from the highest elevation sites on the left, down to the  desert grassland and shrubland site on the far right.  

On an annual time scale we see a really interesting pattern in NEP, or total net carbon stored in the ecosystem.  The grassland was a small source of carbon to the atmosphere in both 2007 and 2008.   The desert shrubland which is only about 10 km away is a small carbon sink, and as you move up in elevation from there, carbon sink strength increases such that the mixed conifer site is storing between 300-400 g C m-2 y-1.    

Both GPP and Respiration increase with elevation, and peak at the Ponderosa pine site before falling off in the mixed conifer site.   The mixed conifer site stores so much carbon in part because it loses a smaller fraction of incoming carbon as respiration relative to the other sites.

These are only annual carbon balance numbers, but you can see in the figure on the right, that the living and non-living pools across this gradient indicate that these annual numbers are indicative of the long-term carbon balance of these sites.   


Seasonal Patterns — Carbon uptake
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Displaying the data this way in terms of cumulative monthly sums of NEP, Re and GPP provides a lot of detail to visualize when during the year these sites are actually storing carbon. 

NEP on the top panel for each site going from grassland to mixed conifer.
Re and GPP are in the middle panel,
Mean monthly temp and total precipitation for each month are shown here on the bottom.

Open bars indicate values for 2007 and closed bars are for 2008.

It is easy to see why the grassland site is small carbon source.  It s a C4 dominated community, and you can see that uptake is restricted to when summer monsoon precipitation is available.  

Uptake in the creosote shrubland, Juniper savnna and PJ woodland is distinctly bimodal – these are all mixed C3/C4 communities, and are sources during the driest part of the summer prior to the monsoon.   

Ponderosa pine is interesting.    We see a bimodal pattern of uptake, with most of the uptake occuring in the spring  when GPP is high but before respiration peaks later in the summer.     It also switched to a source in the dry months prior to the monsoon.

Mixed conifer site takes up carbon during the snow free months, and uptake is more buffered than the other sites to the dry period prior to the monsoon.     


Response curves to temperature, soil water content

Daily C balance (NEE), GPP, R, (g C m2d?)

Daily C balance (NEE), GPP, R, (g C m2d)
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Anderson-Teixeira et
al. (GCB; 2011)



Total nighttime ecosystem respiration rates (g C m= night?)
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Total daily C uptake (g C m=2day?)
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Climate change in the SW
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Hotter, drier conditions predicted for NM and Southwestern US by 2100

Climate change carries with it risks of ;
Shifts in ecosystem distribution, carbon sequestration, hydrological function and increased fire frequency

These are complex multidimensional responses to multidimensional climate change.   Not a lot is known about it at the moment.  
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Pifon-juniper
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Subalpine conifer F
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Predicted change to NM terrestrial ecosystem carbon

balance as mean annual temperature (MAT) increases
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Importance of long term research

Long term continuous measurements of NEE will:

O Represent the full range of climate variability

L Measure the effects of disturbance on ecosystem function
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The surfaces are based on only 3-4 years of continuous monitoring of carbon fluxes in each of these sites.  

 Interannual variability in net C exchange between these biomes and the atmosphere is actually quite high. 

These graphs are showing cumulative carbon fluxes over the course of a year for a low elevation, mid-elevation and high elevation site.   

As the curve gets more negative, the ecosystem is sequestering more C, as it moves in the positive direction, the site is losing C.  


Response surfaces should change with climate and disturbance

Change in:
Temperature
precipitation regime
cloud cover

Extensive pifion mortality in N. NM in 2002
Photo credit: Dr. Craig Allen, USFS



Disturbance and long term research
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Pinon mortality in the SW US

Tree mortality in SW
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At the same time, the multi-year droughts that we experience in many places in the SW on roughly a 50-60 year return interval are predicted to increase in intensity and perhaps increase in frequency.    

This is really important.  You can see we have experienced two of these multi-year droughts in the last 70 years, one in the early part of this decade, the other in the 1950’s.   Both of these droughts triggered widespread mortality in forested biomes.    Ponderosa pine and pinyon juniper woodlands were particularly sensitive early on and you can see the widespread distribution of mortality in these biomes throughout the SW. 

You can see in these photos, the dramatic change in ecosystem structure the extensive mortality triggered.  These well documented photos were taken by Craig Allen from the USFS from a site in the Jemez mts in NM. All of these brown trees here are pinyon trees, which were much more sensitive to the drought than junipers. By 2004, the pinyon juniper woodland is basically a juniper savanna with a huge pool of dead carbon. 


Large scale manipulation experiment

Second PJ woodland < 5km from control
Installed Feb 2009 - pifion girdled Sept 2009
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Overall Conclusions

1. NMEG valuable network for examining C dynamics in semi-arid
ecosystems in the SW US

2. Spatial heterogeneity in SW should not be ignored. Semi-arid biomes
vary distinctly in C sink strength and sensitivity to temperature and
precipitation

3. We are likely to see a decrease in C sequestration throughout the region
if temperature increases and precipitation decreases.

4. Long-term monitoring of these sites crucial to accurately predict how C
dynamics will respond to changes in climate and/or disturbance

5. More complex ecosystem models required (currently using SIPNET, CLM)
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Predicted change to NM terrestrial ecosystem carbon

balance as mean annual temperature (MAT) increases
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