Agricultural Sustainability and Nitrous Oxide (N₂O) Markets

How Long-Term Ecological Research Informs Sustainability Science and Action

Phil Robertson
Kellogg Biological Station LTER Site
W.K. Kellogg Biological Station and
Dept. of Crop and Soil Sciences
Michigan State University

robertson@kbs.msu.edu

Interacting Dimensions of Sustainability for Agriculture

Sustainable Agricultural Practices require

Economic Environmental Social

Economic incentives for producer acceptance

- Profitability
- Economic well-being (wealth)

Social benefit for public acceptance

- Food and energy security
- Rural community health
- Human health & nutrition

Environmental benefit to mitigate burdens

- Climate security
- Biogeochemical health
- Biodiversity benefits

U.S. Average Yields for Major Grain Crops from 1930

Environmental Signals of Agricultural Intensification

Inland Phosphorus

Coastal Nitrate

Habitat loss

U.S. Average Yields for Major Grain Crops from 1930

Sources of information used by Michigan farmers to determine nitrogen fertilizer application rates to corn

	% Getting Information From Source	% Using as Most Important Source
Fertilizer dealers	69.6	36.5
Seed company agronomist	44.7	17.9
University recommendations	31.1	15.8
Other farmers	33.1	7.9
Magazines	23.3	3.4
Private consultant	18.7	7.4
Other	12.9	10.2

D. Stuart et al. 2012 (submitted)

MSU-EPRI Nitrous Oxide Reduction Protocol

Partner Utilities

- American Electric Power
- Detroit Edison Co.
- Duke Energy
- Hoosier Energy Rural Electric Coop
- Oglethorpe Power Corporation
- PNM Resources Inc.
- Salt River Project
- Southern California Edison
- Tri-State Generation and Transmission Coop

Atmospheric Concentrations from 1000 C.E.

Atmospheric N₂O is increasing at rates similar to the other 2 major biogenic gases

Global Warming Potential (GWP) Biogenic Gases

	Lifetime yr	Global Warming Potential		
		20 yr	100 yr	500 yr
CO ₂	variable	1	1	1
CH ₄	12	62	23	7
N ₂ O	114	275	296	156

Atmospheric N₂O from 1976 325 320 AGAGE (NH) AGAGE (SH) NOAA/GMD (NH) NOAA/GMD (SH) 305 300 295 1980 1985 1990 1995 2000 2005

The contemporary N₂O increase is largely due to agricultural intensification

with a total annual impact ~ 1.2 Pg C_{equiv}
 (compare to fossil fuel CO₂ loading = 4.1 PgC per year)

- Industry is responsible for ~16% of the anthropogenic source
 - Agriculture for the remainder
- with most of the agricultural increase (~60%) from cropped soils

KBS Long-Term Ecological Research (LTER) Site

Ecosystem Type Management Intensity Annual Grain Crops (Corn - Soybean - Wheat) Conventional tillage High No-till Low-input with legume cover Organic with legume cover Perennial Biomass Crops Alfalfa Hybrid poplars **Unmanaged Communities** Early successional old field Mid successional old field Late successional forest Low

N₂O Measurements are relatively simple but labor intensive

• Seasonality and environmental **events** are important

Nitrous Oxide Fluxes at KBS are related to the amount of N cycling in the system

■ IPCC 2006 Tier 1 Linear Emission Factor EF = 1.0% (0.25 – 2.25%)

IPCC N₂O Tier 1 Emission Factor

Bouwman et al. 1996

Sources of Global Warming Impacts in KBS Cropping Systems (1992-2010)

Sources of N₂O in soil

KBS corn yields at different N rates (2008)

N₂O fluxes across different N rates (KBS 2010 wheat)

 Emissions factors vary with N-rate – especially above crop optimum

N_2O flux × crop yield

- N₂O fluxes accelerate at N-fertilizer rates greater than yield response
- Implication N₂O savings can be substantial where fertilizer rate exceeds crop needs

Cross-state test of non-linear N₂O response to N-fertilizer

Implications for N₂O reductions for a given N rate reduction

Trading and Offsets

Emerging Offset Opportunities

Benefits

- Reduce agricultural GHGs
- Reduce reactive N release to the environment
- Incentivize conservation using current technology
- Incentivize new technology

Market Issues

- Baseline establishment
- Permanence
- Additionality
- Leakage

How to reduce N-fertilizer rates without affecting yields

Calculators are available for better economic estimates

Mean Return to Nitrogen (MRTN) Calculator

http://extension.agron.iastate.edu/soilfertility/nrate.aspx

Conclusions

- 1. Reactive nitrogen escaping to the environment is a major and recalcitrant problem challenging the sustainability of row-crop agriculture
- 2. Nitrous oxide is the most important source of greenhouse gas impact in fertilized crops
 - Fluxes can be reduced with closer attention to crop needs and adoption of technology that maximizes crop uptake
 - Carbon market payments may be sufficient to incentivize conservation efforts
- 3. Reducing N₂O loss through better fertilizer management will provide co-benefits related to the loss of other forms of nitrogen nitrate, ammonia, and nitric oxides, in particular

