Beyond desertification: New models for state change in drylands

Brandon T. Bestelmeyer
USDA-ARS Range Management Research Unit
Jornada Basin LTER
Las Cruces, NM

Brandon.Bestelmeyer@ars.usda.gov

w/Debra Peters (PI), Steve Archer, Stephanie Bestelmeyer, Kris Havstad, Curtis Monger, Greg Okin, Osvaldo Sala, Robert Schooley, Enrique Vivoni

The Jornada Basin LTER site

- Jornada Basin LTER at New Mexico State University (est. 1982)
- Hosted at the USDA-ARS Jornada Experimental Range (est. 1912) and NMSU Chihuahuan Desert Rangeland Research Center (est. 1927)

What are the causes of and solutions to desertification?

A loss of ecosystem services in drylands due to persistent transitions

Controversial because there is seldom evidence for transitions or their reversibility

Evidence for grassland to shrubland transition in desert grassland region over the last ~150 years

Estimated that two thirds of former grassland area has been significantly altered Gori and Enquist 2003, Yanoff et al., 2008

Why the transition matters

Multiple ecosystem services are based on perennial grass cover

What we have learned from long-term monitoring and experiments

Grass loss was surprisingly abrupt and persistent

Grass production collapses rapidly without destocking during intense drought

Grass recovery may not occur in high rainfall years

Bare ground and seed transport by cattle enabled shrub establishment and spread

Prosopis shrub establishment

Prosopis spread based on aerial photographs

On wind-erodible soils, subsequent grassland-shrubland transitions are independent of grazing

Grass cover collapse and shrub expansion in large area with no grazing since 1940s

Differential responses of grasses and shrubs to wind erosion is a key mechanism for contagious transitions

Removed grass in upwind areas, measured response downwind

Shrub dominance will intensify if precipitation becomes more variable

Experimental enhancement of interannual rainfall variability (more extreme dry and wet years)

As variability increases, grasses lose, shrubs win

But extreme rainfall years can catalyze abrupt grass recovery

Non-linear response of grass production to a sequence of 5 wet years

How to promote grass cover within increasingly shrub-dominated environments?

when shrub cover is low-moderate

Can grasses recover with rest after heavy grazing episodes?

- Started at moderate grazing pressure with moderate shrub and low grass cover
- Controls—no grazing for 20 years
- Treatments—very
 heavy grazing pressure
 for 4 years, then no
 grazing for 16 years

If shrub cover is high—shrub removal required to increase grasses

Over 2 million acres of treatments in last 30 years

Controversial because efficacy unknown

Collaborative long-term research with managers: is shrub removal effective?

- Quasi-experiments for older treatments (1982-2004)
- True experiments for newer treatments (2007-present)

Grass recovery can occur on the right soils, but it's not "restoration"

Shrub thinning promotes grass, but not the original species

Avoid soils with loamy surface textures and signs of severe degradation

Synthesis of long-term data for management tools

JRN contributions to desertification and resilience science

- Abrupt grass loss triggers landscape-level feedbacks promoting shrub dominance
- Increased climate variability will further reinforce shrub dominance
- Management to promote grass recovery needs to account for ecological thresholds and accept novelty

The importance of long-term data and LTER

- Different processes cause change in different time periods
- Such insights essential to guide and adjust management and policy