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VCR LTER:

Causes and consequences of non-linear ecosystem state change




Coastal Blue Carbon Systems

Challenges to incorporating blue carbon in global models:

- Estimating stocks and sequestration rates
- Understanding effects of habitat loss and recovery




Coastal habitats are
global hotspots
for blue carbon storage
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Global stock estimates
led by LTER scientists
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LTER site contributions to
quantifying blue carbon stocks

Carbon stores in mangrove
forests 3x terrestrial forests

M
FCE LTER

Jerath et al. 2016

Carbon stores in seagrass Carbon burial rates in
meadows 4x bare Marshes exceeds forests
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Including blue carbon, ocean
sequestration equals forests

Fate of anthropogenic CO, emissions
(2006-2015)

91%

Sources = Sinks

32% -
" 26%
Blue Carbon = 25%

ocean seq uestration

Source: CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Le Quéré et al 2016; Global Carbon Budget 2016




o
)
>
O
O
)
-
O
-
©
7,
N
e
1
O
C
)
7,
)
Y
e
N
q]
@)
O
O
=
(@)
=
=




Rate of seagrass loss has accelerated
29% loss since 1880’s; 1.5% per year
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The rate of change among decreasing meadows
continues to accelerate...

Waycott et al (2009)
215 studies, 126 years of data
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Reversing the state change
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Reversing the state change
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Density (shoots m2)

Recovery is non-linear

0 - 15 years
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Restoration reinstates soil carbon stores

Plant density drives burial rates

| After 12 yr, burial within
— /ccretion Rate range of natural systems
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Carbon sequestration in plant biomass
Measured by Aquatic Eddy Covariance
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Data typically recorded at 32 - 64 Hz,

5 - 30 cm above benthic surface
Peter Berg



Carbon sequestration in plant biomass
Measured by Aquatic Eddy Covariance
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For each 24-hour period, calculate GPP and R



Changes in metabolism with restoration

GPP (mmol m” day™)
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Density (shoots m2)
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How resilient are
these systems?

Rate of recovery
varies spatially
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Temperature also
drives recovery

Temperature (°C)
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High temperatures cause dieback
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High tides relieve
temperature stress
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; VCR contributions to blue carbon

g - Stocks and sequestration returned within decade
=Eag Temperature drives resilience and recovery

2 « Can provide guidance for management

LTER has unique capability to provide answers

« Combine long-term data with process studies to
understand mechanisms

* Long-term trends and landscape scales needed to
understand resilience

* Network of sites allows comparison to reveal generality

VOLUNTARY

CARBON
STANDARD




