SFWMD Background

- Required by Florida Statutes to supply water to municipalities.
- Required by the 1988 Settlement Agreement (Dept. of Interior vs. the State of Florida) to stop polluting the Everglades so as to not cause “ecological imbalance.”
- Required by Federal Regulations to work with the US Army Corps of Engineers to operate the system** for flood control.

The Everglades Management System**

- 6 million people
- 1 million acres of wetland
- 500,000 acres of agriculture
- 1600 km of canals and levees
- 500 water control structures
Restoration Background

The Water Resource Development Act of 2000 approved the potential to spend $8.4 billion over 24 years as outlined in the Comprehensive Everglades Restoration Plan (CERP).

- CERP is “a framework for modifications and operational changes to the Central and Southern Florida Project that are needed to restore, preserve, and protect the South Florida ecosystem...”.

- CERP will “ensure that new scientific or technical information or information that is developed through the principles of adaptive management...are integrated into the plan”

- CERP will “…provide a means by which the restoration success of the Plan may be evaluated throughout the implementation process.”
Duration of flooding (hydroperiod), currently (right) and under pre-drainage conditions (left).
“pre-drainage” ridge & slough landscape.
impacted ridge & slough landscape
Example: Trends in South Florida Wood Storks

![Graph showing trends in South Florida Wood Storks]

- Number of Nesting Pairs
- Bars represent Everglades (green) and Big Cypress (yellow)
Decompart-mentalization and Enhanced Sheetflow: Phase 1 and 2
TYPICAL PIR PROCESS

Develop Base Conditions and Models
- Conduct NEPA Scoping Activities
- Identify Objectives and Constraints
- Inventory Resources
- Develop Simulation Models (Hydrologic, Ecologic, Water Quality)
- Identify Performance Measures
- Define Existing Conditions
- Define Without Plan Conditions
- Initiate Data Collection

Plan Formulation and Evaluation
- Define Measures (Components)
- Develop Planning Cost Estimates (Real Estate, Construction, O&M)
- Evaluate Measures (compare with and without plan conditions)
- Conduct Incremental Cost Analysis
- Compare Alternative Plans
- Conduct Environmental Assessments

Design Selected Plan
- Prepare Engineering Design
- Develop Draft Water Control Plan
- Prepare Real Estate Gross Appraisal
- Prepare MCACES Cost Estimate
- Quantity Water Made Available
- Identify Water to be Reserved
- Conduct Interim Operations Assessment
- Develop Project Level Monitoring Plan

Prepare Draft PIR

DEP
- Review and Approval
- Sponsor Letter of Intent
- DE Notice
- 30 Day State & Agency Review
- Public and Agency Review of Draft PIR
- Release Draft PIR
- Prepare Final PIR w/NEPA Document
- Release Final PIR
- Washington Level Review of PIR
- Chief of Engineers Report
- Review by ASA (CW) and OMB
- ROD Signed
- Transmit PIR to Congress
A man in a hot air balloon realizes he is lost, reduces altitude and spots a woman below. He descends and shouts:

- “Excuse me, can you help me? I promised a friend I would meet him an hour ago, but I don’t know where I am.

The woman below responds:

- You are in a hot air balloon, hovering 10 feet above an alkaline desert shrub habitat, 2.7 miles east of the Colorado River, near a remnant population and spawning ground of the razorback sucker.

The man says:

- “You must be an LTER biologist.”

The woman says:

- “I am, how did you know?”

The man says:

- “Well, everything you told me was technically correct, but I have no idea what to make of your information, and the fact is - I am still lost. Frankly, you’ve not been much help.”
The woman says: “You must be a project manager.”

The man says: “I am, how did you know?”

The woman says: “Well, you don’t know where you are, or where you are going.

You have risen to where you are due to a large quantity of hot air.

You made a promise to someone that you have no idea how to keep, and you expect me to solve your problem.

The fact is, you are in exactly the same position you were before we meet, but somehow it’s now my fault.”

Lesson to Learn: Managers and scientists must do a better job of working together.
The Florida Coastal Everglades LTER Program

http://fcelter.fiu.edu
The FCE LTER Central Theme

The quality and quantity of ecosystem productivity is a landscape feature controlled by upstream and adjacent biogeochemical gradients.

SRS Transect
TS/Ph Transect
Shark River Slough
Taylor Slough/Panhandle

Freshwater inputs
- Low [P]
- High [N]
- Mod. [DOM]

Saltwater inputs
- High [P]
- Low [N]
- Mod. [DOM]

Salinity zones:
- Freshwater
- 0-10 ppt
- 10-30 ppt
- >30 ppt

Productivity
Water Quality and Nutrient Transport

Monthly means of continuous TN concentration
Shark River Slough transect

[Graph showing monthly means of continuous TN concentration for different transects (SRS-1 to SRS-6) from 2000 to 2003]
Florida Bay Restoration: Evidence for Concern

• Seagrass die-off preceded the occurrence of large-scale algal blooms

• Bioassays of phytoplankton production in central and western FL Bay often demonstrated N limitation

• N concentrations in Everglades’ runoff is high, relative to coastal waters

• Phytoplankton blooms occur in FL Bay region where P from Gulf of Mexico mixes with N from southeast Everglades

• Correlation of flow and bloom magnitude
A Trip down the Shark River Estuary

SRS-4: Freshwater ecotone, farthest from marine influence
A Trip down the Shark River Estuary

SRS-5: Intermediate site
A Trip down the Shark River Estuary

SRS-6: Closest to marine influence
Water Quality and Nutrient Transport
Total nutrient concentrations
Florida Bay estuary & adjacent Gulf of Mexico
Wet Season (2002)
Water Quality and Nutrient Transport

Total nutrient concentrations
Florida Bay estuary & adjacent Gulf of Mexico
Dry Season (2002)
The FCE LTER Central Theme:
Following water as it flows from canal to the Gulf of Mexico through 2 different Everglades wetland basins

FCE-LTER CORE QUESTIONS THAT ARE IMPORTANT FOR WATER MANAGEMENT

- To what extent does the magnitude of freshwater flowing into the mangrove ecotone control water residence time, and thus productivity in this region?

- How does water residence time interact with local process rates to determine oligohaline productivity patterns?

- Does the mangrove productivity effect Florida Bay, or is the bay largely disconnected from this oligohaline ecotone?
Examples of FCE-LTER Thinking “outside-the-box”

- TN increases down Taylor Slough
- TN from Everglades is in the form of dissolved organic matter
- Distinct DOM chemical composition per region
- The production of labile compounds in the coastal ecotone may influence seagrass restoration
The Problem with Restoration: The science that was the basis for CERP was good but mostly hydrologic. The biological and ecological performance measures, used to evaluate alternative plans, were mostly qualitative. We now find ourselves having to conduct scientific “catch-up” to make sure that plans are sound and likely to succeed.

The Solution from LTER: Adaptive resource management is “… learning by doing…” it involves “… large-scale management experiments that directly reveal process impacts…” (Walters 1997).
The Adaptive Management Process

Reduce Uncertainty & Incorporate New Information

Applied Science Strategy

- System-Wide Evaluations
- Goals and Objectives
- Research and Modeling
- Conceptual Ecological Models
- Performance Measures
- Alternative Plan Evaluations
- Monitoring Plans & Assessments

- Reduce Uncertainty & Incorporate New Information
Conclusions

Scientific issues that can be resolved by the FCE-LTER for improved Everglades management include:

– Understanding the downstream impacts of nutrient loads and transformations
– Defining restoration “targets” for ecological attributes with high temporal or spatial variance
– Developing freshwater requirements for Florida Bay
– Developing criteria for the restoration of flow
Adaptive management will ensure that new scientific and technical information developed by the FCE-LTER are incorporated into the restoration efforts.

Water management and Everglades restoration provide a framework for long-term science and a unique feedback to the FCE-LTER for the testing of ecological and landscape hypotheses.
The Real Conclusions!

1. True applicability of LTER science depends upon fiscal integration with management science... Money Talks!

2. True integration will require management scientists to collaborate with LTER scientists... Peer-review!
www.evergladesplan.org

Rescuing an endangered ecosystem – the Plan to restore America's

EVERGLADES

- Why Restore the Everglades?
- Everglades Restoration Plan
- Program & Projects
- Business Outreach
- Learning About the Everglades
- Everglades Science
- Calendar
- Events
- En Español
RECOVER - REstoration COordination and VERification

A multi-agency, multi-disciplinary team of scientists, modelers, planners & resource specialists that are organized to apply the Adaptive Management process in support of the system-wide goals of CERP

RECOVER Leadership Group

Operations Planning Team
1. Assist in design of operational criteria for plan components
2. Recommend interim operational improvements during plan implementation

Model Development and Refinement Team
1. Develop, review, and revise predictive models
2. Coordinate system-wide and project models

Comprehensive Plan Refinement Team
1. Recommend Refinements to Comprehensive Plan
2. Provide Comprehensive Plan Updates for PIRs and Plan Modification Reports

Adaptive Assessment Team
1. Design & Revise Conceptual Models
2. Design & Revise Regional Monitoring
3. Annual Adaptive Assessment Report
4. Science Peer Review

Regional Evaluation Team
1. Design & Revise Performance Measures
2. Conduct Evaluations of Comprehensive Plan Components
3. Technical Issue Resolution

Comprehensive Plan Refinement Team
1. Recommend Refinements to Comprehensive Plan
2. Provide Comprehensive Plan Updates for PIRs and Plan Modification Reports

Adaptive Assessment Team
1. Design & Revise Conceptual Models
2. Design & Revise Regional Monitoring
3. Annual Adaptive Assessment Report
4. Science Peer Review
1940 aerial photos were used to identify tree islands (green) in WCA3; Tree islands equal 22,000 acres.
1995 aerial photos were used to identify tree islands (green) in WCA3; 60% of the 1940 islands have been lost.