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PROJECT SUMMARY

Overview:

Page A

We describe the creation of a new LTER site in the Northern Gulf of Alaska (NGA), a subarctic
marine biome characterized by enhanced productivity and high environmental variability. Two
decades of research by the Seward Line long-term multi-disciplinary program demonstrate the
important role intense variability has on species- and community-level dynamics. This past
research has provided preliminary information essential to assessing ecosystem resilience
by highlighting emergent properties of the NGA:
- A pronounced spring bloom and regions of sustained high summer production
- A stable base of energy-rich zooplankton grazers 
- Substantial sinking flux of organic matter
- Efficient transfer of primary production to higher trophic levels
The LTER site will continue and expand the Seward Line program to cover observations from
spring to fall, and examine features and processes that drive productivity in the NGA to understand
how short- and long-term climate variability propagates through the environment to influence
lower trophic level organisms. On the NGA shelf it is these assemblages that, directly or
indirectly, support the species of fish, benthos, seabirds and marine mammals that are iconic
for Alaska.

Intellectual Merit :
The research focus of the NGA LTER site will be on mechanistic understanding of processes
that underlie environmental variability promoting high productivity and resilience. Building
on prior knowledge, we propose to test three hypotheses centered on ecosystem emergent properties:
1. Changes in the hydrologic cycle affect spring bloom production through changes in cloud
cover, the stratification/mixing balance, macro- and micronutrient supplies, and transport
pathways.
2. Hot spots of high summer primary and secondary production result from interactions between
the fresher ACC and more saline offshore waters as promoted by shelf geomorphology and regional
winds; hot spot timing and magnitude will be influenced by changes in the hydrologic cycle.
3. Nutritional and life history patterns of NGA consumers minimize trophic mismatch, buffering
spatial and temporal variability in lower trophic level production and leading to resilience
in the face of long-term climate change in the NGA.
We will address these hypotheses with a cohesive research program that includes: a) seasonal
time series studies that addresses short- and long-term environmental and ecosystem variability
through a spring-to-fall field observational program that will build upon, and enhance the
Seward-Line times series, a leveraged mooring component that will enhance frequency of temporal
measurements, and collaboration to obtain higher trophic level data; b) process studies that
initially focus on hypothesized mechanisms leading to variability in NGA production in time
and space; c) modeling studies that incorporate physical and biogeochemical observations and
provide a framework for testing hypotheses, and for predicting ecosystem response to projected
environmental changes; d) a data management component that provides a repository and a platform
for data visualization to facilitate synthesis.
Advantages to the NGA as an LTER site: a highly productive biome not represented by the LTER
network; a strong climate context provided by two decades of Seward Line observations; pronounced
variability that allows ’space for time’ investigation; a rich history of coupled bio-physical
modeling of the region to advance prediction of ecosystem response to perturbation.

Broader Impacts :
Data and metadata will be available online to LTER colleagues, educators & students, and resource
managers. Our Education & Outreach component includes development of a series of videos featuring
understanding gained from this research, and scientist in ocean-related STEM careers. These
will be shown through various venues, including the Alaska SeaLife Center, will be incorporated
into virtual field trips for K-12 students, and will be available to the LTER schoolyard network.
We will train graduate and undergraduate students across disciplines and in field techniques.
Our synthesis work will aid in effective ecosystem-based management of commercially important
fisheries in Alaska.
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Changes in the hydrologic cycle affect spring bloom production through changes in cloud cover, the 
stratification/mixing balance, macro- and micronutrient supplies, and transport pathways.

2. Hot spots of high summer primary and secondary production result from interactions between the 
fresher ACC and more saline offshore waters as promoted by shelf geomorphology and regional 
winds; hot spot timing and magnitude will be influenced by changes in the hydrologic cycle.

3. Nutritional and life history patterns of NGA consumers minimize trophic mismatch, buffering spatial 
and temporal variability in lower trophic level production and leading to resilience in the face of long-
term climate change in the NGA.
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1. Changes in the hydrologic cycle will affect spring bloom production through changes in cloud cover, 
the stratification/mixing balance, macro- and micronutrient supplies, and transport pathways.

2. Hot spots of high summer primary and secondary production result from interactions between the 
fresher ACC and more saline offshore waters as promoted by shelf geomorphology and regional 
winds; hot spot timing and magnitude will be influenced by changes in the hydrologic cycle.



3. Nutritional and life history patterns of NGA consumers minimize trophic mismatch, buffering spatial 
and temporal variability in lower trophic level production and leading to resilience in the face of long-
term climate change in the NGA.



1. Patterns and controls of primary production
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NGA LTER 

Project Management Plan  
Intellectual coordination and governance of the project will be principal investigators (Table 1). 

Decision-making will be by consensus within this group, including such potential issues as inclusion of 
new investigators, modification to the proposed research plan, and re-allocation of funds. Associates 
(Table 1) can contribute to these discussions. Communication will occur through bimonthly phone 
conferences, frequent email exchanges, and an annual project meeting. The annual project meeting will 
generally be held in conjunction with a widely attended national meeting (e.g., Ocean Sciences, Aquatic 
Sciences, LTER All-Investigator meeting), and will serve to present findings and review 
accomplishments from the previous year, plan the coming year’s work, and discuss site management 
related issues. This meeting will be open to our NOAA fisheries and USFWS collaborators, graduate 
students whose research involves significant intellectual engagement with NGA, and colleagues involved 
in the Seward Line observational program. Effort will be made to allocate travel funds to graduate 
students for participation in project meetings. Hopcroft and Danielson are members of the Gulf Watch 
Alaska scientific management committee, ensuring co-ordination of NGA with their activities and 
scientists through quarterly phone conferences and annual meetings. Participation in Gulf Watch Alaska 
provides links to the majority of programs underway in the NGA and PWS, including projects from 
nearshore invertebrates to great whales.  

 
Table 1. Participants for the NGA LTER site 
Name Role Institution Interest 
Russ Hopcroft Lead PI UAF  Zooplankton Ecology 
Ana Aguilar-Islas co-PI UAF  Iron Biogeochemistry 
Seth Danieldson co-PI UAF  Circulation and water masses 
Jerome Fiechter co-PI UCSC Biophysical Modeling 
Suzanne Strom co-PI WWU Phytoplankton and Microzooplankton Ecology 
Rob Bochenek  Associate  Axiom Information Systems 
Claudine Hauri Associate  UAF  Biophysical Modeling 
David Hill Associate  OSU  Environmental Fluid Mechanics 
Andrew McDonnell Associate UAF  Particulate Matter Dynamics 
Marylin Sigman Associate  UAF  Education and Outreach 
 
Specific PI responsabilities  

Lead PI Hopcroft will oversee the sampling program, act as chief scientist on most cruises, aided by 
Danieldson, Strom or Aguilar-Islas in the role of co-chief scientist, and be responsible for synthesis and 
preparation of the reports – a roll he fulfills with the existing Seward Line consortium. He will serve as 
the site representative on the LTER council. A project manager will be hired (2 months per year) to assist 
with administrative tasks as well as to maintain and update the project website. UAF has several senior 
scientific staff members capable of performing this function, final choice will be determined prior to 
project initiation. Financial administration will be handled by Hopcroft’s departmental grant technician at 
no specific cost to this project as part of UAF’s F&A costs. 

Hopcroft has worked on planktonic communities for 30 years, and within Alaska waters for nearly 15 
years. He has worked on numerous large multidisciplinary projects, including NPRB’s Gulf of Alaska 
Program, often performing coordination roles in addition to his scientific duties. He has worked closely 
with most of this proposal’s co-PIs for the past decade. He is broadly trained in most oceanographic 
disciplines, and in the operation, maintenance and trouble-shooting of most equipment to be used in this 
project. Within the disciplines, Hopcroft will be responsible for daytime operations of CTD and 
zooplankton sampling. His laboratory technicians have decades of experience with Alaska waters 
zooplankton. 

Danielson will process data streams from physical parameters and assist in data interpretation and 
cross-disciplinary synthesis activities. Danielson is a physical oceanographer with over 20 years of 
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experience in Alaska regional oceanography, focusing on causes and effects of shelf circulation and 
thermohaline variations. Danielson has been involved with Seward Line sampling since 1997, acting as 
chief scientist on nearly a third of the monitoring cruises between 1998 and 2004. In addition, he is 
involved with the moored time-series at GAK1 (the inner-most Seward Line station) and assists the 
National Park Service with their Vital Signs Monitoring oceanographic surveys in Glacier Bay waters 
(1993-present). He will be involved in graduate student training and mentoring. 

Strom will be responsible for chlorophyll analysis, as well as phyto- and microzooplankton 
identification, quantification, and process studies. She has been working on phyto- and microzooplankton 
in the Gulf of Alaska for ~25 years, with recent projects focused on coastal waters. She has participated in 
numerous cruises to the region, including several as chief scientist, and has served in leadership roles 
(e.g., science steering committee) for several multi-disciplinary programs in the region. Her expertise 
includes lower trophic level productivity, environmental effects on marine plankton, and trophic 
interactions among phyto-, microzoo- and mesozooplankton. Strom’s laboratory technicians have decades 
of experience with Gulf of Alaska phyto- and microzooplankton. Strom will be involved in student 
mentoring and training. 

Aguilar-Islas will be responsible for all aspects of sampling, processing and analysis of iron species. 
She will also oversee collection of samples for macronutrient analysis and will coordinate with ODF the 
analysis of these samples. She will be directly involved in the design and execution of onboard 
experiments that include iron and macronutrient manipulation. She will mentor a graduate student as part 
of this project, and will be involved in synthesis and publication of results. She has expertise in trace 
metal chemistry and focus in high latitude systems. She has participated in several multidisciplinary 
projects including work in the Gulf of Alaska shelf (NPRB GoA Project), the Bering Sea Shelf (BEST-
BSRP), and the Columbia River Plume (RISE). She is an active participant in GEOTRACES program – 
and international study of marine biogeochemical cycles of trace elements and their isotopes – including 
involvement in sample collection and distribution to the community, intercallibration work, and 
membership in the scientific steering committee for the US.   

McDonnell has extensive experience studying sinking particulate matter as it relates to the ocean’s 
biological carbon pump and has developed and advanced several methodologies in this field.  McDonnell 
will be responsible for overseeing the particulate matter component of this LTER project.  This includes 
the operation of the moored sediment trap to obtain a new time-series of particulate matter fluxes, as well 
as assessments of the particle concentration and size distribution from the in situ optical instruments 
(UVP and LISST).  McDonnell will be responsible for processing the samples and data from these 
instruments and will participate in the analysis and publication of these results. 

Fiechter will act as the lead investigator for the modeling component. His expertise is in coupled 
physical-biological and end-to-end ecosystem models applied to the Northeastern Pacific region (i.e., 
Gulf of Alaska and California Current System). More specifically, Fiechter has successfully used ROMS 
and NPZD-type models in both forward and data assimilative configurations to study the role of wind 
forcing and mesoscale eddies on phytoplankton community structure in the NGA. He has also explored 
innovative methods, such as ensemble calculations and Bayesian hierarchical models, to address 
questions related to uncertainty in biogeochemical model parameterization. Fiechter’s main 
responsibilities will be to coordinate research activities (both within the modeling group and with the 
observational team), implement, run, and analysis output from the coupled ROMS-NEMURO model in 
its different configurations (see specific tasks listed under D.5.b), contribute to manuscripts and annual 
reports writing. 

Hauri is specialized in using regional/global models and observations to study biogeochemical 
processes in Polar regions. As part of a currently funded NSF project she is developing a high-resolution 
coupled physical-biogeochemical model to identify the drivers and patterns of high CO2 waters in the 
Gulf of Alaska. For this LTER project, Hauri will collaborate on all modeling aspects of the proposed 
work including implementation, evaluation, comparison with existing models, and preparation of future 
simulations. She will contribute to the analysis and publication of the results, especially as they relate to 
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the impacts of climate change and ocean acidification on inorganic carbon dynamics and ecosystem 
processes. 

Sigman will be responsible for outreach and education activities and products. She has two decades of 
experience managing outreach and education programs for Alaska marine ecosystems research, including 
the Gulf Watch Alaska program and Alaska Sea Grant research and education projects. She also served as 
an outreach consultant to numerous Gulf of Alaska researchers through the NSF-funded Alaska Center for 
Ocean Sciences Education Excellence.  

Bochenek will serve as the technical manager of the data management system for this LTER program, 
supervising a technical staff of 15 at Axiom. He will serve as the primary spokesperson to communicate, 
work with, and respond to requirements and concerns of the PIs and LTER Council. Additionally, he will 
have oversight to ensure data accessibility and preservation needs are being met relative to LTER 
Network policies and submitted on schedule as stated in the RFP to make them publically accessible 
through the NIS Data Portal and the DataONE network. 

The Seward Line observational program operates as a consortium led by Hopcroft. The consortium 
(Table 2) consists of funding through NPRB’s Gulf of Alaska program, and through the EVOS Gulf 
Watch Program. Support from the latter is now in the 5th year of a 5-year funding cycle that is conceived 
as the first phase of a 20-year program with renewals. Hopcroft receives annual funding through AOOS 
envisioned to cover the same 20-year duration. Funding from NPRB, through the agency’s long-term 
monitoring program, is nearing the end of the second of a 5-year cycle. Nearly half of the support from 
these three sources is required to fund shiptime for the spring and fall surveys. UAF provides in-kind 
logistical support for cruises and a month of Hopcroft’s salary annually. USFWS provides some portion 
of salary support for Kuletz. Hopcroft serves on the Science advisory team of the EVOS Gulf Watch 
program and through this structure, coordinates with all other members of the Gulf Watch oceanographic 
component: Weingartner/Danileson’s GAK1 project, Batten’s CPR program, Campbell’s Prince William 
Sound and Doroff’s Kachemak Bay oceanography. Kutlez is also a Gulf Watch PI working on seabirds 
within PWS & Cook Inlet. Co-PI McDonnell has received NSF support for particle flux. Given its 
duration, the Gulf Watch program already has guidelines in place on conflict resolution, and replacement 
of senior personnel upon retirement or failure to meet commitments. We expect these principles to be 
transferable to our LTER, with NSF program managers involved in consultation when appropriate.  

Table 2. Funding streams supporting the Seward Line core observation program (spring and fall). 

Source  2014/15 2015/16 2016/17 2017/18 2018/19 TOTAL 
NPRB (core) $200,000 $200,000 $200,000 $200,000 $200,000 1,000,000 
UAF $20,160 $20,745 $21,350 $21,970 $22,600  
FWS  $27,000  $27,810  $28,644  $29,504  $30,389   
AOOS $100,000 $100,000 $100,000 TBD TBD  
EVOS $100,497 $104,007 $107,703 TBD TBD  
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Data Management Plan 
Data Management System 

Data management will be supplied by Axiom Data Science (www.axiomdatascience.com) and 
leverage the existing data system developed and supported by its partner, the Alaska Ocean Observing 
System (AOOS). Axiom is an informatics and software engineering firm focused on developing scalable 
cyberinfrastructure to integrate, curate, and provide access to real-time, modeled, GIS and remote sensing 
data. Through this data system, PIs will have access to the Research Workspace, which is a web-based 
project level data management system. The Workspace serves as central platform to store and 
collaboratively share preliminary data, sampling protocols, and other materials.The Workspace is coupled 
with an integrated editor for PIs to generate metadata records that comply with ISO 19115 standards. The 
Workspace and its metadata editor will be supported and cultivated throughout the project with several 
major modifications and upgrades planned. Data and metadata stored on the Workspace will then be 
packaged and sent to the DataONE member node maintained by Axiom/AOOS, and linked to the AOOS 
Gulf of Alaska Data Portal (http://portal.aoos.org/gulf-of-alaska.php) to be made publicly-accessible to 
broad community of scientists and decision-makers. A large task will be to work on compatibility of data 
streams from various projects, so that synthesized products and visualizations can be created. A web-
based data visualization/integration tool will be deployed, which provides users with an interface to NGA 
LTER project level data and visualizations. This interface will allow users to query project profiles and 
metadata by time, parameter, species and spatial location. Significant work has already been undertaken 
by Axiom staff to design and develop this system as a component of the core AOOS data system. Long-
term preservation of data in DataONE and the LTER Network Information System (NIS) Data Portal will 
be facilitated through the new, automated data-submission feature in development for the Workspace, 
scheduled for release concurrently with the Axiom/AOOS DataONE member node in November 2016. 
The NGA LTER website will also inform the public of the project and provide a link to the data 
visualization interface and archive.  

The Axiom team will provide the NGA LTER with critical data management support to assist study 
teams in efficiently meeting their objectives and ensuring data produced or consolidated through the effort 
are organized, documented and available to be used by fellow LTER investigators and future research 
efforts. The data management team proposes to leverage AOOS’s existing data system already in use by 
the Seward Line PIs to support data submission, metadata generation and data transfer to data repositories 
using the Research Workspace. The data management team will work closely with researchers to track 
data submissions to ensure they occur within 2 years of collection.  It will review/audit metadata and data 
structure formats produced from NGA LTER projects and advise study team members in best practices 
for data formats and metadata authoring. Axiom software engineers will support and enhance existing 
web-based tools designed for the discovery and interactive exploration of visualized NGA LTER project 
data. The data management team will also guide and support PIs in the generation and update of data 
management plans, authoring metadata, and archiving project data to the NIS Data Portal and DataONE 
according to LTER Network policies.  
Types of  Data 
This project will generate and assemble diverse types of data and products from moorings, cruises, and 
ocean circulation/biogeochemical modeling. Data from shipboard oceanographic sampling will include 
conductivity, temperature, depth, dissolved organic/inorganic carbon, chlorophyll a, micro- and 
macronutrients, phyto-, micro-, and zooplankton composition and biomass, primary production via stable 
isotope analysis, optically-derived particle size/flux, and seabird and marine mammal observations. 
Moorings will collect oceanographic data at multiple depths, including temperature, conductivity 
interpreted as salinity, acoustic recordings, acoustic backscatter, photosynthetically active radiation, iron 
speciation, current velocity, directional wave spectra, particle size spectra, colored dissolved organic 
matter, optical backscatter, pH, and variety of other data types depending on final instrumentation. 
Physical-biogeochemical model simulations will produce regional predictions of phyto- and zooplankton 
community responses to variations in seasonal climatology of freshwater input. 
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Data and Metadata Standards 
Data management staff will assist with the creation of data management plans (DMP) specific to each 
NGA LTER project at its onset; thereafter, project PIs will update DMPs annually. NGA LTER projects 
will use well-defined, community accepted data and metadata formats and appropriate standards. We will 
use guidelines for data and metadata developed by the LTER Network and consistent with the Division of 
Ocean Science Sample and Data Policy that are designed to promote broad data access, standardization, 
and long-term data usability. Tabular data will be delivered to the Workspace as comma-delimited ASCII 
files (csv) which include header information that is uniformly formatted for each data type. Any 
geospatial products will be stored in the Workspace in their native formats and converted to shapefiles, 
geoTIFFs, or netCDF files for long-term preservation and sharing. Oceanographic models (& datasets) 
will be shared and preserved in netCDF to support a machine-independent format for representing data. 
Metadata documentation will be generated in either ISO 19115 or Ecological Metadata Language (EML) 
specifications that are adapted for a variety of data types and used universally in the oceanographic and 
ecological sciences. Metadata authoring will follow policies that meet the LTER standards for the NIS 
Data Portal. Data management staff will recommend and provide guidance on the metadata editor tool 
available through the Research Workspace. The Workspace metadata editor generates ISO 19115 
standard metadata, with a roadmap for future developments including the ability to export metadata 
content as EML. In the interim, investigators that chose the EML format will be required to upload their 
EML record to the Workspace where it will be packaged, shared, and preserved with the data, and 
translated into ISO 19115 for discovery through the publicly-accessible portal(s). 
Data Submission Policy 
The NGA LTER site endorses the LTER Network Data Access Policy, which states that research data 
must be made available online within 2 years of collection and no later than publication of the main 
findings. The following guidelines will be followed to ensure the availability of NGA data to a broad 
research community: 1) Project data management plans must be submitted by the PI at the start of a new 
project and updated annually thereafter until completion; 2) Data and metadata must be submitted to the 
Research Workspace within 1 year of collection, and will be freely and publically available in the LTER 
NIS Data Portal and the AOOS Gulf of Alaska Data Portal not to exceed 2 years after collection. 3) 
Primary responsibility for data completeness and integrity (quality control) rests with the submitiing PI. 
Data Use, Archive, and Preservation 
Within 2 years of collection, NGA LTER site data will be freely available from the DataONE network, 
the LTER NIS Data Portal, and from the AOOS Gulf of Alaska Data Portal, along with descriptive 
metadata and supplemental documentation as appropriate. Data collected during NSF-supported 
oceanographic research cruises will be submitted to the R2R (Rolling Deck to Repository) program by the 
vessel operator. Prospective data users will be asked to identify themselves to the LTER PI and/or the PI 
responsible for the dataset to be used. Metadata for each dataset will include citation information as well 
as the following use statement: This dataset is released to the public and may be freely reused. Please 
keep the NGA LTER site and the dataset contact person informed of any plans to use the dataset. 
Consultation or collaboration with the original investigators is strongly encouraged. Publications and 
data products that make use of the dataset must include proper acknowledgement. More information on 
LTER Network data access and use policies is available at: http://www.lternet.edu/data/netpolicy.html. 
Milestones and Deliverables 
2017 Dec: NGA LTER Workspace group created, PIs have access, trainings scheduled for Jan-Feb 2018. 
2018 Oct: Data inventory exists, submissions procedures shared with PIs and tracking by Axiom team. 
2018 Oct-2019 Oct: Data from 1st year collection submitted to the Workspace with draft metadata 
describing projects and datasets; Axiom quality reviews data formats and metadata; repeated annually for 
data collected in subsequent years. 
2019 Oct - 2020 Oct: Data from first collection year has been transferred to LTER NIS with complete 
metadata; repeated annually for data collected in subsequent years. 
2023 Oct: All data and metadata, including model results and documentation, from initial 6 years of NGA 
LTER has been transferred to LTER NIS and DataONE. 
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