By Kelsey Bisson
For a while the ocean existed to me as an abstraction. I grew up in Ohio and I’d never been. I imagined it to be the deepest, darkest, scariest, most enchanting thing on Earth and even so, I couldn’t quite imagine it exactly — it was just too big, too distant, too different.
Lately I’ve been thinking about how we require things to be different in order to define our realties. Minutes, hours, days, months and years of being alive have allowed us to define what is ‘normal’ because we’ve experienced numerous ever-changing extremes. Extreme events, extreme people, and extreme ideas are so named for their departure from our expectations rather than for their absolute value, and in doing so we require them to inform our personal and collective understanding of the world. Most simply said, when it comes to understanding complexity so called ‘opposites’ are needed.
With that in mind I’ve been playing around with how the contrast between the sciences and arts might be used to greater understand ocean cycles. Everywhere on Earth, cycles emerge. These cycles are essentially opposites in motion, creating a contrast between what is now, what was then, and probabilistically what will be. Cycles are in a lot of places but in some of the coolest ways they exist in nature and in music. For instance you could define a song for its durable cadence and ephemeral choruses, for its high and low tempos, for the sounds themselves or for the space they leave in the silence. Similarly we can identify patterns in nature that range in magnitude, shape, rhythm, chaos, and duration. These patterns and processes build on each other, much like instruments in a peaking crescendo that crests into dissolution. Inevitably these systems or songs will reset, retreating back into the stillness that birthed them only to begin again sometime in the future.What if we could take a song and stretch it out so that instead of lasting a few minutes it lasted a year long and (abstractly speaking) occupied all of Earth? What might that look like? What might that sound like?
This intrigues me because 1) it’s fun and weird to think about and 2) because sound signals are much like natural fluctuations that can be taken as the sum of many perturbations that together form what we see/hear/smell/taste/feel.
When we scale up a song we could expect patterns that are congruent to the seasonal cycles observed in phytoplankton around the world’s oceans. Phytoplankton are organisms (similar to plants in some ways) that are diverse, tiny, photosynthetic, numerous, global, and lazy. They can’t control their movement; they float in the ocean’s surface waters and harvest energy from the sun. When conditions are good, phytoplankton bloom, much like a huge garden in the sea. They breathe in CO2 and actually contribute nearly half of the oxygen we breathe. Recently I had some fun trying to visualize this* and here is the result:
Naturally a song is not the same thing as an ocean. Even so, comparing their contrasting scales can be scientifically liberating. What differences might arise when looking at a milliliter of ocean water compared to an entire ocean basin? What if we study it for a day or what about for ten years? As people we tend to work on time scales of hours and at distances of feet to miles — but in contrast— phytoplankton time and spatial scales are much smaller and their life cycles are far more rapid than ours. Because of this it’s really important to consider them at their own tempo (not ours) in order to get insights about the greater roles they play in controlling climate and feeding the world’s oceans.
* More accurately I’m visualizing the export efficiency, or the fraction of export of primary production from the surface ocean to the deep. The higher this is, the more CO2 from our atmosphere is removed where it can be stored in the ocean for centuries to millennia. This has profound implications for climate and is thus of much interest!
Kelsey uses a combination of satellite data, oceanographic data collected from trips at sea, and ecological theory to understand how plankton export carbon into the deep ocean. She is a PhD candidate at the University of California, Santa Barbara.
email: kelsey.bisson@lifesci.ucsb.edu