Soil organic matter is a massive storehouse for carbon, as well as a key regulator of nutrient cycling and soil quality in terrestrial ecosystems, yet ecology lacks a full understanding of the controls on stabilization and breakdown of soil organic matter. Two sets of competing theories underlie models that adequately predict site-specific dynamics, but result in different sets of predictions about the response of soil organic matter to perturbations. Cross-site synthesis of long-term, studies, particularly those incorporating experimental perturbations, provides an opportunity to evaluate these theories under varying conditions of climate, biological community, and topography, among other factors. This working group is synthesizing soil organic matter data across 15 LTER sites and also includes data and participants from Critical Zone Observatory (CZO) sites, Detrital Input and Removal Treatments (DIRT) Network, and Nutrient Network (NutNET). The group’s goal is to refine and evaluate soil organic matter stabilization theories and to produce a dataset that encompasses the impact of experimental manipulations on soil organic matter at different sites.
Top Stories
Love writing about science? Now accepting applications for our 2024 LTER Graduate Writing Fellows program!
A changing Arctic drives a new generation of research
Measuring Methane in 4D: Tree Fluxes at Harvard Forest
Shaped by fire: the Bonanza Creek LTER
Renewed funding for the LNO prioritizes synthesis, broadening participation, and mentorship
It begins with quality data: non-LTER student uses SBC LTER data to learn R, presents work at ESA
Science at the Top of the World, or, 48 Hours at Beaufort Lagoon Ecosystems LTER
Announcing the LTER Photo Contest, 2024
Engagement Practice Briefs
Crossing boundaries: two new synthesis working groups funded at the LTER