The Flux Gradient Project

researcher recording data in flux tower overlooking coastal forest

The Flux Gradient Project: Understanding the methane sink-source capacity of natural ecosystems While biogenic CH4 emissions are thought to be of a similar magnitude to anthropogenic emissions, biogenic emissions remain the most uncertain source of the global CH4 budget. The vast areas with relatively small uptake and emission rates have been largely understudied but could… Read more »

Marine consumer nutrient dynamics

fish swimming through kelp forest

Consumer-mediated nutrient dynamics of marine ecosystems under the wake of global change Increases in the frequency and severity of disturbance events as a result of global change are altering population and community dynamics of marine animals. Given that animals are key recyclers of nutrients in many ecosystems, these ecological impacts may have consequences for ecosystem… Read more »

Identifying environmental drivers of plant reproduction across LTER sites

Reproduction is a key component of plant life cycles and is crucial for dispersal, however it has a surprisingly poorly understood relationship to environmental drivers. This is particularly true for plant species with highly variable reproduction over time, known as ‘mast seeding’. While mast-seeding patterns have been linked to weather (temperature, precipitation), describing past patterns… Read more »

Ecosystem transitions: increased variability and regime shifts

Human impacts on ecosystems can result in persistent compositional shifts that are difficult to reverse even after relaxation from perturbations. Considerable debate remains on whether these observed shifts in ecosystems are due to the existence of tipping points and systems with alternative attractors, or whether observed shifts in ecosystems represent communities in alternative trajectories that… Read more »

A global synthesis of multi-year drought effects on terrestrial ecosystems

Drought impacts on terrestrial ecosystems have increased globally over the last century with models forecasting that droughts will become more frequent, extreme, and spatially extensive. The goals for this project are to synthesize results from a unique global network of drought manipulations, focusing on how ecosystem productivity responds to drought over time and key mechanisms… Read more »

Ecological Metagenome-derived Reference Genomes and Traits (EMERGENT)

Our climate crisis, resulting from changes in interacting climate variables (temperature, rainfall, atmospheric chemistry) over the last century, has impacted all ecosystems on the surface of the Earth. With modern DNA sequencing techniques it is now possible to simultaneously sample thousands of different species, providing a window into the diverse soil organismal community and their… Read more »

Synthesizing population and community synchrony to understand drivers of ecological stability across LTER sites

Project Summary: Understanding factors that influence ecological stability is a key question in ecology. Population ecology has highlighted that synchrony within a species over space is an important indicator of species stability. Community ecology, in contrast, has highlighted that asynchrony between species within space may enhance the stability of aggregate properties (such as total productivity)…. Read more »

Scaling-Up Productivity Responses to Changes in Biodiversity

Project summary: Although hundreds of short-term local experiments indicate that random changes in biodiversity can cause substantial changes in primary productivity, considerable debate remains regarding whether these influences of biodiversity are weaker or stronger at larger spatial and temporal scales in natural ecosystems. Given this knowledge gap, current models often implicitly assume no influence of biodiversity… Read more »

Advancing soil organic matter research: Synthesizing multi-scale observations, manipulations & models

Soil organic matter is a massive storehouse for carbon, as well as a key regulator of nutrient cycling and soil quality in terrestrial ecosystems, yet ecology lacks a full understanding of the controls on stabilization and breakdown of soil organic matter. Two sets of competing theories underlie models that adequately predict site-specific dynamics, but result… Read more »