Our climate crisis, resulting from changes in interacting climate variables (temperature, rainfall, atmospheric chemistry) over the last century, has impacted all ecosystems on the surface of the Earth. With modern DNA sequencing techniques it is now possible to simultaneously sample thousands of different species, providing a window into the diverse soil organismal community and their ecological traits. While often the sequence data is stored at international nucleotide sequence data centers (NCBI, EBI, DDBJ), these databases do not have the resources to process and integrate microbiome data. This results in the compartmentalization of studies, failure to effectively utilize data across sites, and repetitive development of similar analytical pipelines across multiple research groups. The EMERGENT working group intends to alleviate some of these bottlenecks to make greater use of the existing genetic data to address climate related-questions and provide reference species (genomes) for future research. Their work will advance efforts to harmonize molecular information for microbial taxa and their functional traits, streamline their use in syntheses with related ecosystem level data, and enable future metagenomic studies to leverage EDI environmental data, spurring future microbial ecology research at LTER sites.
Top Stories
LTER at AGU, 2024
New DataNugget: Do urchins flip out in hot water?
From Species Richness to Ecosystem Resilience: a Synthesis Study of Marine Consumer Nutrient Supply
Love writing about science? Now accepting applications for our 2024 LTER Graduate Writing Fellows program!
A changing Arctic drives a new generation of research
Measuring Methane in 4D: Tree Fluxes at Harvard Forest
Shaped by fire: the Bonanza Creek LTER
Renewed funding for the LNO prioritizes synthesis, broadening participation, and mentorship
It begins with quality data: non-LTER student uses SBC LTER data to learn R, presents work at ESA
Science at the Top of the World, or, 48 Hours at Beaufort Lagoon Ecosystems LTER