The events that reshape ecosystems can be infrequent and often unpredictable.

Major droughts, hurricanes, the arrival of a new species, or a shift in ocean currents can dramatically affect the way an ecosystem looks and functions. Legacies from past events can cause two sites that look superficially similar to behave in very different ways.

Yet most ecological studies are funded just a few years at a time.

In 1980, the National Science Foundation funded the first Long-Term Ecological Research (LTER) sites to provide a longer view.

Today, research programs at 27 LTER sites support ecological discovery on the influence of long-term and large-scale phenomenon.

LTER sites also serve the wider ecological community by:


Making almost 40 years of sustained observations publicly available

Developing and maintaining large-scale experiments, which provide starting conditions for process-level studies, help to parameterize and test model, and spur cross-site synthesis

Providing long-term context and deep knowledge of place for researchers working on shorter-term projects

Training hundreds of graduate students in interdisciplinary and collaborative team science

LTER sites are the core of the network


Each LTER site involves dozens of researchers, typically including microbial, community, and landscape ecologists, but also hydrologists, geochemists, social scientists, economists and even the occasional artist, historian, or philosopher.

The shared knowledge of place offers unusual common ground for exploring disciplinary intersections.

two students sampling grasses
square plots of diverse herbs and shrubs

Education and outreach helps LTER science make an impact


The longer tenure of LTER sites also makes them particularly well-suited to developing the relationships needed to engage with stakeholders, educators, and the public.

All LTER sites have an education and outreach component, although the exact nature of the program varies by site. Remote forested sites may deal mainly with foresters and landowners, while urban sites may more closely engage community residents.

Data, especially data management, play a crucial role


The value of LTER’s long-term data resource is immense and LTER data managers have been leaders in the movement to ensure that ecological data is accessible and usable.

Dedicated information managers document and archive LTER data in public repositories so that they can be re-used by the broader scientific community.

The Environmental Data Initiative (EDI) is LTER’s primary data repository and has a strong record of serving FAIR (Findable, Accessible, Interoperable, and Reproducible) data. Occasionally, LTER datasets reside in disciplinary- or geographically-focused repositories and EDI maintains metadata referencing the full dataset.

Network Vision, Mission, & Goals


Vision


LTER envisions a society in which exemplary science contributes to the advancement of the health, productivity, and welfare of the global environment that, in turn, advances the health, prosperity, welfare, and security of our nation.

Thus, LTER’s mission is to provide the scientific community, policy makers, and society with the knowledge and predictive understanding necessary to conserve, protect, and manage the nation’s ecosystems, their biodiversity, and the services they provide.

Mission


The LTER Network was founded in 1980 by the National Science Foundation with the recognition that long-term research could help unravel the principles and processes of ecological science, which frequently involves long-lived species, legacy influences, and rare events. As policymakers and resource managers strive to incorporate reliable science in their decision making, the LTER Network works to generate and share useful and usable information.

Goals


Understanding

To understand a diverse array of ecosystems at multiple spatial and temporal scales.

Synthesis

To create general knowledge through long-term, interdisciplinary research, synthesis of information, and development of theory.

Outreach

To reach out to the broader scientific community, natural resource managers, policymakers, and the general public by providing decision support, information, recommendations, and the knowledge and capability to address complex environmental challenges.

Education

To promote training, teaching, and learning about long-term ecological research and the Earth’s ecosystems, and to educate a new generation of scientists.

Information

To inform the LTER and broader scientific community by creating well-designed and well-documented databases.

Legacies

To create a legacy of well-designed and documented long-term observations, experiments, and archives of samples and specimens for future generations.

Core Themes


Five core research themes have been central to LTER Network science from the conception of the Network. Research in these core areas requires the involvement of many scientific disciplines, over long time spans and broad geographic scales. Data on the core areas are collected to establish and understand the existing conditions in an ecosystem before any experimental manipulation is begun.

The common focus on core areas facilitates comparison among and across sites in the Network.

Primary Production – Plant growth in most ecosystems forms the base or “primary” component of the food web. The amount and type of plant growth in an ecosystem helps to determine the amount and kind of animals (or “secondary” productivity) that can survive there. Read LTER research stories related to primary production.

Population Studies – Populations of plants, animals, and microbes change in space and time, moving resources and restructuring ecological systems. Read LTER research stories related to population studies.

Movement of Organic Matter – An entire ecosystem relies on the recycling of organic matter (and the nutrients it contains), including dead plants, animals, and other organisms. Decomposition of organic matter and its movement through the ecosystem is an important component of the food web. Read LTER research stories related to organic matter movement.

Movement of Inorganic Matter – Nitrogen, phosphorus, and other mineral nutrients are cycled through the ecosystem by way of decay and disturbances such as fire and flood. In excessive quantities nitrogen and other nutrients can have far-reaching and harmful effects on the environment. Read LTER research stories related to mineral cycling.

Disturbance Patterns – Disturbances often shape ecosystems by periodically reorganizing structure, allowing for significant changes in plant and animal populations and communities. Read LTER research stories related to disturbance patterns.

Two additional themes emerged with the addition of urban LTER sites, but it has become clear that they are also relevant for the rest of the Network:

Land Use and Land Cover Change: examine the human impact on land use and land-cover change in urban systems and relate these effects to ecosystem dynamics. Read LTER research stories related to land use and land cover change.

Human-Environment Interactions: monitor the effects of human-environmental interactions in urban systems, develop appropriate tools (such as GIS) for data collection and analysis of socio-economic and ecosystem data, and develop integrated approaches to linking human and natural systems in an urban ecosystem environment. Read LTER research stories related to human-environment interactions.

Well into its fourth decade, the LTER’s long-term experiments continue to reveal cutting edge ecological processes only gleaned through long-term study.

We can’t wait to see what the next forty years bring.


Recent Stories

  • A Changing Climate Drives Change in Ecological Modeling

    A Changing Climate Drives Change in Ecological Modeling

    Relying on a 114 year-long data set, researchers from the Sevilleta LTER have developed a more accurate way to model climate sensitivity functions that describe the relationship between ecological variability and plant productivity, rather than focusing on linear relationships between ecosystem response and average climate trends, as is more typical.  While variances in factors such as……

    Read More >>

  • Hurricane Disturbances May Increase Resilience in Wet Tropical Forests

    Hurricane Disturbances May Increase Resilience in Wet Tropical Forests

    Hurricanes are typically considered destructive and disastrous, with high-speed winds exceeding 75 miles per hour and torrential downpours. These powerful storms can have major impacts on tropical forests, ripping open the forest canopy and causing organic debris to pile up on the forest floor. Despite these seemingly destructive qualities, new research suggests that ecological disturbance……

    Read More >>

  • The Devil’s in the Details for Kelp Forest Biodiversity

    The Devil’s in the Details for Kelp Forest Biodiversity

    Kelp forests have long been known to harbor a high number and diversity of marine species, from tiny crustaceans to large fish and marine mammals. This biodiversity tends to be attributed to the complex structure and productivity of giant kelp, earning it the title ‘foundational species’. Surprisingly, however, little quantitative data has been assessed to……

    Read More >>

  • Timing is Everything: Long-Term Monitoring Key to Understanding Ecosystem Resilience

    Timing is Everything: Long-Term Monitoring Key to Understanding Ecosystem Resilience

    In ecology, timing is key to understanding how daily, seasonal, or yearly cycles impact environmental processes. But it’s not just about how often impacts occur, but also over what length of time. Decades worth of data synthesized by researchers at Coweeta LTER provide some of the clearest evidence to date that long-term observations of ecosystem……

    Read More >>

  • Sea Level Rise Making Things Saltier in the Everglades

    Sea Level Rise Making Things Saltier in the Everglades

    For those living in South Florida, sea level rise is a very real problem that’s impacting coastal areas right now, and is expected to worsen over the next decade. While most discussions on sea level rise in Florida focus on highly populated coastal cities such as Miami and Tampa, sea level rise is also having……

    Read More >>