Search

Jaikumar, N. S.;Snapp, S. S.;Murphy, K.;Jones, S. S. 2012. Agronomic assessment of perennial wheat and perennial rye as cereal crops 104: 1716-1726. doi:10.2134/agronj2012.0291.
Bahlai, C. A.;Colunga-Garcia, M.;Gage, S. H.;Landis, D. A. 2013. Long-term functional dynamics of an aphidophagous coccinellid community remain unchanged despite repeated invasions 8: e83407. doi:10.1371/journal.pone.0083407.
Kasten, E. P.;Gage, S. H.;Fox, J.;Joo, W. 2012. The remote environmental assessment laboratory's acoustic library: An archive for studying soundscape ecology 12: 50-67. doi:10.1016/j.ecoinf.2012.08.001.
Woltz, J. M.;Landis, D. A. 2014. Coccinellid response to landscape composition and configuration 16: 341-349. doi:10.1111/afe.12064.
Robertson, G. P.;Grace, P. R.;Izaurralde, R. C.;Parton, W. P.;Zhang, X. 2014. Correspondence: CO2 emissions from crop residue-derived biofuels 4: 933-934. doi:10.1038/nclimate2402.
Kahmark, K.;Millar, N. 2014. Stainless Steel Chamber Construction Method
Aanderud, Z.;Lennon, J. T. 2011. Validation of heavy-water stable isotope probing for the characterization of rapidly responding soil bacteria 77: 4589-4596. doi:10.1128/AEM.02735-10.
Rodrigues, D. F.;da C. Jesus, E.;Ayala-del-Río, H. L.;Pellizari, V. H.;Gilichinsky, D.;Sepulveda-Torres, L.;Tiedje, J. M. 2009. Biogeography of two cold-adapted genera: Psychrobacter and Exiguobacterium 36: 658-665. doi:10.1038/ismej.2009.25.
Ladoni, M. 2015. Interactive effects of cover crops and topography on soil organic carbon and mineral nitrogen
Robertson, G. P.;Gross, K. L.;Hamilton, S. K.;Landis, D. A.;Schmidt, T. M.;Snapp, S. S.;Swinton, S. M. 2014. Farming for services: An ecological approach to production agriculture 64: 404-415. doi:10.1093/biosci/biu037.
Haramoto, E. R.;Brainard, D. C. 2012. Strip tillage and oat cover crops increase soil moisture and influence N mineralization patterns in cabbage 47: 1596-1602.
Stoddard, S. F.;Smith, B. J.;Hein, R.;Roller, B. R.;Schmidt, T. M. 2015. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development 43: D593. doi:10.1093/nar/gku1201.
Petersen, L. F.;Woltz, J. M. 2015. Diel variation in the abundance and composition of the predator assemblages feeding on aphid-infested soybean 60: 209-219. doi:10.1007/s10526-014-9631-6.
Salam, D. E. 2011. Nitrogen fertilization effects on litter decomposition dynamics and soil carbon in agricultural system
Dethlefsen, L. 2004. Translational power differs between bacteria pursuing different ecological strategies
Lee, Z.;Schmidt, T. M. 2014. Bacterial growth efficiency varies in soils under different land management practices 69: 282-289. doi:10.1016/j.soilbio.2013.11.012.
Kallenbach, C.;Grandy, A. S. 2015. Land-use legacies regulate decomposition dynamics following bioenergy crop conversion 7: 1232-1244. doi:10.1111/gcbb.12218.
Kallenbach, C. M.;Grandy, A. S.;Frey, S. D.;Diefendorf, A. F. 2015. Microbial physiology and necromass regulate agricultural soil carbon accumulation 91: 279-290. doi:10.1016/j.soilbio.2015.09.005.
Basso, B.;Hyndman, D. W.;Kendall, A. D.;Grace, P. R.;Robertson, G. P. 2015. Can impacts of climate change and agricultural adaptation strategies be accurately quantified if crop models are annually re-initialized? 10: e0127333. doi:10.1371/journal.pone.0127333.
Shoemaker, W. R.;Muscarella, M. E.;Lennon, J. T. 2015. Genome sequence of the soil bacterium Janthinobacterium sp. KBS0711 3: e00689-15. doi:10.1128/genomeA.00689-15.