Search
“Low-to-moderate nitrogen and phosphorus concentrations accelerate microbially driven litter breakdown rates”
25 (3): 856-865. doi:10.1890/14-1113.1. http://coweeta.uga.edu/publications/10931.pdf.
2015.
“Influence of Forest Disturbance on Stable Nitrogen Isotope Ratios in Soil and Vegetation Profiles”
79 (5): 1470-1481. doi:10.2136/sssaj2015.03.0101. http://coweeta.uga.edu/publications/10941.pdf.
2015.
“Damping of Stream Temperature Time Series by Hyporheic Exchange”
: 140. http://coweeta.uga.edu/publications/10923.pdf.
2015.
“Colluvial legacies of millennial landscape change on individual hillsides, place-based investigation in the western Pyrenees Mountains”
Online: . doi:10.1016/j.quaint.2015.08.031. http://coweeta.uga.edu/publications/10951.pdf.
2015.
“Pedogenic effects of mid- to late-Holocene conversion of forests to pastures in the French western Pyrenees.”
59: 225-245. doi:10.1127/zfg_suppl/2015/S-59212. http://coweeta.uga.edu/publications/10950.pdf.
2015.
“Effects of lateral nitrate flux and instream processes on dissolved inorganic nitrogen export in a forested catchment: A model sensitivity analysis”
51: 2680–2695. doi:10.1002/2014WR015962. http://coweeta.uga.edu/publications/10937.pdf.
2015.
“Detrital stoichiometry as a critical nexus for the effects of streamwater nutrients on leaf litter breakdown rates”
96 (8): 2214-2224. doi:10.1890/14-1582.1. http://coweeta.uga.edu/publications/10940.pdf.
2015.
“Stoichiometry and estimates of nutrient standing stocks of larval salamanders in Appalachian headwater streams.”
doi:10.1111/fwb.12572. http://coweeta.uga.edu/publications/10929.pdf.
2015.
“Paired carbon and nitrogen metabolism by ammonia-oxidizing bacteria and archaea in temperate forest soils”
6 (10): . doi:10.1890/ES14-00299.1. http://coweeta.uga.edu/publications/10967.pdf.
2015.
“Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion tension theory”
doi:10.1111/pce.12657. http://coweeta.uga.edu/publications/10949.pdf.
2015.
“On the difference in the net ecosystem exchange of CO2 between deciduous and evergreen forests in the southeastern United States.”
21 (2): 827-842. doi:doi 10.1111/gcb.12723. http://coweeta.uga.edu/publications/10915.pdf.
2015.
“Salamander growth rates increase along an experimental stream phosphorus gradient”
96 (11): 2994-3004. doi:10.1890/14-1772.1. http://coweeta.uga.edu/publications/10958.pdf.
2015.
“Knowing climate change, embodying climate praxis: experimential knowledge in southern Appalachia”
105 (2): 253-262. doi:10.1080/00045608.2014.985628. http://coweeta.uga.edu/publications/10928.pdf.
2015.
“Modeling change in forest biomass across the eastern US”
: 1-19. doi:10.1007/s10651-015-0321-z. http://coweeta.uga.edu/publications/10938.pdf.
2015.
“How well do terrestrial biosphere models simulate coarse-scale runoff in the contiguous United States?”
303: 87-96. doi:10.1016/j.ecolmodel.2015.02.006.. http://coweeta.uga.edu/publications/10912.pdf.
2015.
2015.
2015.
2014.
2013.
2015.