Excess Nutrient Pollution Sends Salt Marsh Microbes into Dormancy

A recent experiment examined the impacts of increased nitrogen on salt marshes—and the all-important microbes within them.
A recent experiment examined the impacts of increased nitrogen on salt marshes—and the all-important microbes within them.
Each forest reflects a legacy of past disturbances—from the literal detritus left behind a storm or fire to the prominence of particular species traits that enable species to bounce back after a specific type of disturbance.
How can researchers project the ways in which land-use changes will affect ecosystem services when they don’t yet know what course development will take? Integrated scenario analysis models several possible trajectories to examine the interactive effects that land-use change could have on ecosystem structure and function.
What information is needed to predict where fires will start in desert grasslands and how big they will get? Soil type turns out to play a larger role than expected.
Nitrogen enrichment can dramatically change the existing environment for plants and typically leads to increased productivity, decresed diversity, and shifts plant community composition. But what mechanisms are responsible for these changes? Researchers designed a multi-site experiment to find out, experimentally manipulating each of three possible drivers across mesocosms of three ecosystem types (tall grass prairie, alpine tundra, and desert grassland).
New analyses demonstrate that long-term nitrogen enrichment substantially changes the community composition of soil fungi in a temperate hardwood forest. The mix of fungal taxa that emerges appears to be better able to tolerate high nitrogen but less able to break down the lignin in organic matter, which contributes to an overall accumulation of soil carbon.
Do arts and humanities programs at LTER sites further the Network’s mission? Recent research posits that art-humanities-science collaborations generate empathy – and associated emotions like inspiration, awe, and wonder – for the natural world. This empathy then drives society to engage with and care more broadly about nature.
This month’s Ecology Letters features the first global quantitative synthesis of under-ice lake ecology. In their analysis of 36 abiotic and biotic variables across 101 lakes, the authors issue a call to arms for more winter lake research—currently the focus of only 2% of freshwater publications. As the climate warms, they warn, temperate ecosystems are losing ice, and limnologists remain unsure what ecological processes are at stake. Though winter has long been understood as an inactive period, some data suggests that winter foodwebs and physical processes remain vigorous and that winter ecology can drive subsequent summer conditions.
Ecologists know that nitrogen, phosphorus and leaf area play key roles in the productivity of plant communities. But how tightly are they tied together? And are those relationships sustained over different types of landscapes? A recent study of tallgrass prairie communities, building on a previous study of arctic tundra, found leaf area index (LAI) to be strongly correlated to both total foliar nitrogen and total foliar phosphorus in several plant functional types (grass, forb, woody, and sedge) and grazing treatments (cattle, bison, and ungrazed).
How sensitive are coastal ecosystems to sharp changes in temperature? Using a detailed spatial analysis in the Florida Everglades, researchers found that cold snaps reduced ecosystem productivity most dramatically in areas with low water levels that were located away from the coast. With more extreme weather events predicted in the future, knowing the likely effects of low temperature events on subtropical wetlands systems can inform management of these important ecosystems.