Project Summary: Many global change drivers (GCDs) lead to chronic alterations in resource availability. As communities change through time in response to these GCDs, the magnitude and direction of ecosystem responses is also predicted to change in a non-linear fashion. We propose to examine whether plant community dynamics are predictive of shifts in ecosystem function across 101 long-term resource manipulation experiments (including 32 LTER experiments). Our working group will address three main objectives: 1) identify temporal patterns of plant community change in response to global change manipulations; 2) link these patterns of community change to changes in aboveground net primary productivity and carbon storage; and 3) incorporate community change into ecosystem models predicting functional responses to GCDs. These objectives address four of the five LTER core thematic areas (primary production, population studies, organic matter dynamics, and disturbance patterns/processes). Overall, we will test current ecological theory to inform predictions of future responses to GCDs across a wide variety of terrestrial herbaceous systems, including those represented by 17 LTER sites. Funding from the LTER NCO will allow a diverse group of ecologists with expertise in modeling, statistical development, community ecology, and field experiments to come together to accomplish these objectives.
Top Stories
LTER at AGU, 2024
New DataNugget: Do urchins flip out in hot water?
From Species Richness to Ecosystem Resilience: a Synthesis Study of Marine Consumer Nutrient Supply
Love writing about science? Now accepting applications for our 2024 LTER Graduate Writing Fellows program!
A changing Arctic drives a new generation of research
Measuring Methane in 4D: Tree Fluxes at Harvard Forest
Shaped by fire: the Bonanza Creek LTER
Renewed funding for the LNO prioritizes synthesis, broadening participation, and mentorship
It begins with quality data: non-LTER student uses SBC LTER data to learn R, presents work at ESA
Science at the Top of the World, or, 48 Hours at Beaufort Lagoon Ecosystems LTER