Gallery Directory Document Archive Events Data PortalNetwork GraphicsMember Login
LTER logo
  • The Network
    • LTER Community Forum
    • Directory
    • About the LTER Network
      • 2019 Network Self Study
      • Vision/Mission/Goals
      • History
      • LTER-related Opportunities
    • LTER Events
      • 2025 PI Meeting
      • 2024 LTER Science Council Meeting
      • 2023 Science Council
      • 2022 Science Council Meeting
      • 2021 Science Council Meeting
        • Lightning Talk Schedule
      • 2022 All Scientists’ Meeting
      • 2018 All Scientists’ Meeting
      • 2021-2022 Webinar Series
    • LTER Code of Conduct
    • Network Organization
      • Network Organization
      • Network Leadership
      • Committees
      • Mail Lists
      • LTER Network Office
    • Resources
      • LTER Document Archive
      • New to the Network
      • Information Management Resources
      • Broadening Participation Resources
      • Education Resources
        • Remote Teaching Resources
        • Educator Recruitment 
      • Communication Resources
        • Role of the LTER Network Office
        • Communications Planning
        • Communications Fundamentals
        • Twitter for scientists: the tool you never knew you needed
        • Using Video to Communicate Science
  • Sites
    • Site Profiles
    • Site Briefs (2019)
    • LTER Road Trip
    • Site Characteristics
    • Site Contacts
  • Research
    • How We Work
    • LTER Data Resources
    • Key Findings
    • Core Themes
    • Synthesis
      • Request for Synthesis Proposals 2025
        • Request for Proposals 2024
        • Request for Proposals 2022
      • LTER Synthesis Working Groups
      • Synthesis Skills for Early Career Researchers
      • Working Group Archive
      • Synthesis Resources
      • Guidance for Working Group PI’s
    • Publications
      • Journal Articles
      • Reports
      • Books
      • Annual Reports
  • Learning
    • Graduate Education
      • Graduate Writing Fellows
      • Short Stories About Long-Term Research Blog
    • Undergraduate Research Opportunities
    • K-12 Education
      • Schoolyard Book Series
      • LTER DataNuggets
      • Data Jams
    • For Teachers
    • Engaging Communities
      • Science Engagement Project
      • LTER Arts & Sciences
      • Community Science
      • Site Tours
    • Activities by Site
  • Using LTER Science
    • Finding LTER Data
    • Resource Managers
    • Communities and Individuals
      • Scenarios
    • International
    • Related Research Networks
  • News
    • LTER in the News
    • LTER Newsletter Signup
      • DataBits
    • Social Media
      • Blue Sky
      • Instagram
      • YouTube
      • Facebook
      • Twitter
      • Sites that Tweet
    • Photo Gallery
    • Video Gallery

Luquillo LTER

Home » Sites » Luquillo LTER

Site Contacts

Lead Principal Investigator: Jess Zimmerman
Co-Lead Principal Investigator: Christopher Nytch
Primary Contact: Monique Picon
Information Manager: Miguel Leon
Education Contact: Steven McGee
Broadening Participation Contact: Juan Garcia-Cancel
Site Grad Rep A: Shayla Husted
Site Grad Rep B: Leonardo Rivera Pagan
View all people at this site

Links

Home Page
Data
Bibliography
Personnel
Newsletter
Information Management
Education Program
Site Brochure (2019)
SmugMug Site Gallery

Site Details

Research Topics:
Environmental Setting Disturbance and Recovery Food Webs Forest Dynamics Geology Climate and Hydrology Landslides Streams Models Read More

A key feature of the LEF's ecosystems is disturbance. Hurricanes, landslides, and human disturbance have shaped the forest, and research by LUQ has stimulated a new appreciation of the significance of large-scale disturbances in tropical forested ecosystems and the key role of plants and animals in shaping the response to these events (see Disturbance and Recovery, Landslides, Forest Dynamics). Hurricanes occurring one and 10 years after LUQ began in 1988 provided landscape-scale natural experiments which are still followed closely.

Among the most important findings from these natural experiments is that detrital dynamics plays a central role in forest recovery by influencing carbon and nutrient storage and flow. Therefore, in the context of the overall research goal, the most recent research questions are:

  1. How do climatic factors, litter quality, and detritivore diversity regulate decomposition of detrital pulses?
  2. How do terrestrial and aquatic food webs differ in their response to detrital pulses?
  3. What is the effect of disturbance frequency on nutrient cycling, plant community composition, and the accumulation of soil organic matter?
  4. To what degree is the export of carbon and nutrients from watersheds a result of soil characteristics that are affected by detrital dynamics?
  5. How do elevationally related changes in climate impact plant and detritivore communities, and how do these feed back on the quantity and quality of litter inputs and decomposition?

The LUQ research plan for answering these questions is based on:

  1. Long-term measurements of forest and stream response to natural and anthropogenic disturbance
  2. Associated short- and long-term manipulative experiments to develop a process-level understanding of results from our long-term measurements
  3. Validation of this understanding through parallel experiments and measurements along gradients of climate and species richness
  4. Comparison of results from LUQ with other LTER and non-LTER sites (see Proposals, and Methods for detailed protocols)

This work addresses critical issues about global climate change, tropical forest carbon dynamics, and changes in biodiversity by:

  1. Chronicling the effects of repeated hurricane disturbance and climatic gradients on the long-term dynamics of a tropical forest ecosystem
  2. Providing long-term assessments of carbon storage in tropical biomass and soils
  3. Examining the degree to which species and functional groups contribute to detrital dynamics and the ability of an ecosystem to recover following disturbance.

By extending an understanding of the LEF to other disturbance-driven systems, LUQ is making significant contribution to our knowledge of the mechanisms by which disturbance structures ecosystems.

Read Less
Description:
The Luquillo Experimental Forest (LEF) has been a center of tropical forestry research for nearly a century. In addition, the LEF is a recreation site for over a half a million people per year, a water supply for approximately 20% of Puerto Rico's population, a regional center for electronic communication, and a refuge of Caribbean biodiversity. It is the goal of the USDA Forest Service and the University of Puerto to promote and maintain the forest's role as a center of active and dynamic scientific inquiry. However, to maintain the ecological integrity of the forest while balancing the many demands placed upon it's resources, certain protocol is required. This guide provides the major protocols that govern research in the LEF. These protocols are designed to help researchers protect the forests, obey the law, create an amiable and non-discriminatory work environment, and provide a historical record for future scientists. Read More

The Luquillo Long-Term Ecological Research (LUQ) program takes place in the Luquillo Mountains of Puerto Rico. This tropical setting has steep environmental gradients, a varied natural disturbance regime, and a history of human land use. Of the mountain area 11,330 hectares are included in the Luquillo Experimental Forest (LEF), which is congruent with the Caribbean National Forest, part of the U.S. National Forest system. The mountains rise to over 1075 m. Prevailing winds coming off the ocean from the east drop rain as they rise over the mountains; thus rainfall increases with elevation, ranging from about 3530 mm year-1 at low elevations to 4850 mm year-1 higher up. February through April are the drier months, but monthly rainfall is variable. Mean monthly temperatures at lowest elevations range from about 23.5ºC in January to 27ºC in September, and at the highest elevations from 17ºC to 20ºC (see article Climate and Hydrology in this web page).

The Luquillo Mountains are composed mainly of igneous rock formed in the Cretaceous, with some intrusive materials from the Tertiary (see Geology). Soils are deep, weathered, and moderately rich in nutrients. Little humus accumulates, due to rapid decomposition, except in local areas at upper elevations, where decomposition seems to be inhibited by waterlogging. Nutrient pools in the soil are typically equal to or greater than those in the aboveground biomass, except for phosphorous, of which more is in plant biomass than in soil. Soil nutrients are not necessarily available to plants. For example, low oxygen availability in the waterlogged soils of high-elevation cloud forests may decrease rates of decomposition and nutrient uptake by roots. There are four main life zones, delineated on the basis of temperature and precipitation (Holdridge System), in the Luquillo Mountains: subtropical wet and subtropical rain forests are found at low and mid elevations, lower montane rain and lower montane wet forests at high elevations. There is also an area of subtropical moist forest at low elevations on the southwest slope.

The forests are classified into four types. "Tabonuco forest", so named for the dominant "tabonuco" tree (Dacryodes excelsa), covers lower slopes to about 600 m. In well-developed stands the larger trees exceed 30 m in height, there is a fairly continuous canopy at 20 m, and the shaded understory is moderately dense. Tabonuco trees are especially large on ridges, where they are firmly rooted in the rocky substrate and connected by root grafts with each other. There are about 168 tree species in the tabonuco forest. The "colorado forest", named for the large "colorado" tree (Cyrilla racemiflora), begins above the tabonuco forest and extends up to about 900 m. Its canopy reaches only about 15 m. Soils are saturated and root mats above the soil are common. There are some 53 tree species in this forest type. At this same elevation, but in especially steep and wet areas, is "palm forest", heavily dominated by the sierra palm, Prestoea acuminata. Patches of palm forest are also found in saturated riparian areas in the tabonuco forest. The palm forest reaches about 15 m in height. At the highest elevations is "dwarf forest", a dense forest as short as 3 m, on saturated soils. Here the trees are covered with epiphytic mosses and vascular plants, especially bromeliads, and these also cover large areas of the ground.

Ascending the Luquillo Mountains through these forest types, the average tree height and diameter, number of tree species, and basal area (cross sectional area of tree stems) tend to decrease, while stem density increases. Epiphytes become more common with elevation Much plant, animal, and ecosystem research has taken place in tabonuco forest near El Verde Field Station, operated by the Institute for Tropical Ecosystem Studies of the University of Puerto Rico. El Verde is at 350 m elevation, with mean rainfall 3450 mm per year. The soils are of volcanic origin. Work on the plant community at El Verde has focused on the 16-ha Luquillo Forest Dynamics Plot (LFDP; see Forest Dynamics). There are 89 tree species ³ 10 cm diameter in the LFDP. The commonest are Prestoea acuminata, Casearia arborea, Dacryodes excelsa, Manilkara bidentata, Inga laurina, and Sloanea berteriana. The commonest shrubs are Palicourea riparia, Psychotria berteriana, and Piper glabrescens. Grasses, ferns, and forbs are frequent on the ground, especially in canopy gaps; epiphytes are fairly common, and vines are uncommon.

The Bisley Experimental Watersheds are another main LUQ study area in tabonuco forest. At El Verde, Bisley, and elsewhere in the mountains LUQ also conducts intensive sutdies on stream ecology (see Streams). The Luquillo Mountains support a high biomass of lizards and frogs (see Food Web). Native mammals include bats; rats, cats, and mongooses are introduced. Birds include several species endemic to Puerto Rico, such as the Puerto Rican Tody, an understory insectivore, and the Puerto Rican Parrot, an endangered species. Walkingsticks, which are herbaceous insects resembling short twigs, and snails are fairly common. Streams support shrimps and aquatic insects. The compositon and diversity of animals differs between Puerto Rico and temperate zone forests and mainland tropical forests. Natural disturbances in the Luquillo Mountains include hurricanes, landslides, treefalls, droughts, and floods. Human disturbances, mainly in the past, include road construction, charcoal production, clearing for pasture and crops, creation of coffee plantations, and logging. In general the forest recovers more quickly after natural than after human disturbances (see article: Disturbance and Recovery).

Read Less
History:
LUQ LTER 1 was submitted in 1988, LTER 2 in 1994 and the current one, LTER 3 was first submitted in 2000, re-submitted and finally accepted in 2002. Read More

The Luquillo Experimental Forest (LEF) Long-Term Ecological Research Program began in 1988 with the goal of integrating studies of disturbance regime and forest structure and dynamics with a landscape perspective. Two central research questions addressed 1) the relative importance of different disturbance types within the four tropical rain forest life zones of the LEF and 2) the importance of the biota in restoring ecosystem productivity after disturbance.

The long-term monitoring program initiated as part of the Luquillo LTER was critical to the evaluation of immediate and subsequent effects of Hurricane Hugo, which struck Puerto Rico in 1989. The occurrence of a hurricane soon after the initiation of the LTER program provides an opportunity to study the long-term dynamics of a tropical forest as it recovers from a major disturbance. Emphasis on the impacts of hurricanes and human disturbances on ecosystem dynamics of the LEF continued in LTER 2. Further attention was directed at deciphering interactions among the biota and their impact on critical ecosystem variables that determine responses to natural disturbances. New initiatives expanded the comprehensive analysis of disturbance and ecosystem response to include elevations up to the summit of the Luquillo Mountains.

In the LTER 3 proposal, we combined long-term measurements, field experiments, simulation modeling, and cross-site comparisons to address five questions: (1) How do climatic factors, litter quality, and detritivore diversity regulate decomposition of detrital pulses? (2) How do terrestrial and aquatic food webs differ in response to detrital pulses? (3) What is the effect of disturbance frequency on nutrient cycling, plant community composition, and the accumulation of soil organic matter? (4) To what degree is the export of carbon and nutrients from watersheds a result of soil characteristics that are affected by detrital dynamics? (5) How do elevationally related changes in climate impact plant and detritivore communities, and how do these feed back on the quantity and quality of litter inputs and decomposition?

Through our focus on disturbance and detrital dynamics, we build on existing strengths in integrating community and ecosystem ecology and the research opportunities provided by infrequent, large-scale disturbance, high diversity, and pronounced elevational gradients in the LEF. Our research is being conducted in two spatial contexts. In mid-elevation tabonuco forest, we will continue long-term measurements of ecosystem response to hurricanes, landslides, and anthropogenic disturbance. Long-term measurements of hydrological and nutrient fluxes in watersheds will relate soil characteristics to stream nutrient and organic matter losses and provide information to gauge the effects of future disturbances. Simulation models of key population, community, biogeochemical, and landscape processes provide null-model predictions to inform these new observations and experiments.

Read Less

Location

Latitude: 18.3
Longitude: -65.8
Elevation: 350
Biome: Tropical Rainforest
View Map

Grant History:

    LTER-0SUP: DBI–2305814
    Research Infrastructure: Installation of solar infrastructure to enhance research capacity and resilience to disturbance at El Verde Field Station
    Start Date: August 15, 2023

    LTER-06: DEB–1831952
    LTER: Luquillo LTER VI: Understanding Ecosystem Change in Northeastern Puerto Rico
    Start Date: February 15, 2019

    LTER-05B: DEB–1546686
    LTER: LTER5: Understanding Ecosystem Change in Northeastern Puerto Rico
    Start Date: April 1, 2016

    LTER-05: DEB–1239764
    LTER: LTER 5: Understanding Environmental Change in Northeast Puerto Rico
    Start Date: January 1, 2014

    LTER-04: DEB–0620910
    Luquillo LTER Program 4: Understanding Change in the Ecosystems of Northeastern Puerto Rico
    Start Date: December 1, 2006

    LTER-03B: DEB–0218039
    LTER: Long-Term Ecological Research in the Luquillo Experimental Forest 3
    Start Date: December 1, 2002

    LTER-03: DEB–0080538
    LTER III: Long-Term Ecological Research on the Luquillo Experimental Forest
    Start Date: November 1, 2000

    LTER-02B: DEB–9705814
    LTER: The Luquillo Experimental Forest II
    Start Date: December 15, 1996

    LTER-02: DEB–9411973
    LTER: The Luquillo Experimental Forest II
    Start Date: November 15, 1994

    LTER-01: DEB–8811902
    Luquillo Experimental Forest
    Start Date: October 15, 1988

Updated June 12, 2025

Key Research Findings

Climate Change Will Impact Lower Elevation Forests First
Drought in Rainforests is Increasing in a Warming World
Hurricane Frequency Impacts Forest Biodiversity and Ecosystem Function

View all key research findings
for this site

Luquillo LTER News

Internships (6) at the Luquillo LTER
El Verde REU: Tropical Ecology
researcher up to her armpits in marshwater
Two LTER Sites Emerge from Hurricanes Intact
Dr. Christopher Patrick stands in a brown stream in front of several huge downed trees in the mud.
Ecosystems are resistant or resilient to hurricanes, but not both
Ready-to-teach R Environmental Datasets: the lterdatasampler R package
A shallow stream runs through red rocks amid a
Stream Dissolved Nitrogen Cycling Responds to Human Activity across the Landscape
Remembering Dr. Frank H. Wadsworth, founder of the Luquillo LTER
Coordination is everything: Species richness synchrony predicts ecosystem stability across ecosystems
Tenure Track Faculty Position - Luquillo LTER
screen icon
Research on tropical forest resilience to hurricane damage
Doctoral position available in tropical ant ecology (starting 2021)
Research Manager Positions - Luquillo Long-Term Ecological Research Program
video camera icon
Study: Streams may emit more CO2 as climate warms
loudspeaker icon
Streams may emit more carbon dioxide in a warmer climate
Hurricane Disturbances May Increase Resilience in Wet Tropical Forests
Events • Document Archive • People • Publications • Opportunities • Contact Us
© 2025 LTER. Managed by LTER Network Office, NCEAS, UCSB, 1021 Anacapa Street, Santa Barbara, CA 93101
Except where otherwise noted, material may be re-used under a Creative Commons BY-SA 4.0 license.

This material is based upon work supported by the National Science Foundation under grant # 1545288, 10/1/2015-9/30/19 and # 1929393, 09/01/2019-08/31/2024, and # 2419138, 08/01/2024-present . Any opinions, findings, conclusions, or recommendations expressed in the material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Privacy Policy | Feedback
Created by NDIC