Search
“Robust empirical relationships for estimating the carbonate system in the southern California Current System and application to CalCOFI hydrographic cruise data (2005–2011)”
117 (C5): C05033. doi:10.1029/2011JC007511. http://dx.doi.org/10.1029/2011JC007511.
2012.
“Utilization of heme as an iron source by marine Alphaproteobacteria in the Roseobacter clade”
79 (18): 5753-5762. doi:10.1128/AEM.01562-13.
2013.
2012.
“The potential for improving remote primary productivity estimates through subsurface chlorophyll and irradiance measurement”
112: 107-116. doi:10.1016/j.dsr2.2013.12.008. http://dx.doi.org/10.1016/j.dsr2.2013.12.008.
2015.
“Covariability of zooplankton gradients with glider-detected density fronts in the Southern California Current System”
112: 79-90. doi:10.1016/j.dsr2.2014.04.002. http://dx.doi.org/10.1016/j.dsr2.2014.04.002.
2015.
“Temporal and spatial patterns of microbial community biomass and composition in the southern California Current Ecosystem”
112: 117-128. doi:10.1016/j.dsr2.2014.02.006. http://dx.doi.org/10.1016/j.dsr2.2014.02.006.
2015.
“Multi-satellite time series of inherent optical properties in the California Current”
112: 91-106. doi:10.1016/j.dsr2.2013.07.023. http://dx.doi.org/10.1016/j.dsr2.2013.07.023.
2015.
“Climate-ecosystem change off southern California: Time-dependent seabird predator–prey numerical responses”
112: 158-170. doi:10.1016/j.dsr2.2014.03.008. http://dx.doi.org/10.1016/j.dsr2.2014.03.008.
2015.
“Autonomous Ocean Measurements in the California Current Ecosystem”
26 (3): 18-25. doi: 10.5670/oceanog.2013.41. http://dx.doi.org/ 10.5670/oceanog.2013.41.
2013.
“Ecological Transitions in a Coastal Upwelling Ecosystem”
26 (3): 210-219. doi:10.5670/oceanog.2013.65. http://dx.doi.org/10.5670/oceanog.2013.65.
2013.
“The MAREDAT global database of high performance liquid chromatography marine pigment measurements”
5: 109-123. doi:10.5194/essd-5-109-2013.
2013.
“Genomic island genes in a coastal marine Synechococcus strain confer enhanced tolerance to copper and oxidative stress”
online: 1-11. doi:http://www.nature.com/ismej/journal/vaop/ncurrent/suppinfo/ismej2012175s1.html 10.1038/ismej.2012.17. http://dx.doi.org/10.1038/ismej.2012.175.
2013.
“Epipelagic and mesopelagic fishes in the southern California Current System: Ecological interactions and oceanographic influences on their abundance”
138: 20-28. doi:10.1016/j.jmarsys.2013.09.007. http://dx.doi.org/10.1016/j.jmarsys.2013.09.007.
2014.
“Aggregates and their distributions determined from LOPC observations made using an autonomous profiling float”
74: 64-81. doi:10.1016/j.dsr.2012.12.009 10.1016/j.dsr.2012.12.009. http://www.sciencedirect.com/science/article/pii/S0967063713000071.
2013.
“Bringing physics to life at the submesoscale”
39 (14): L14602. doi:10.1029/2012GL052756. http://dx.doi.org/10.1029/2012GL052756.
2012.
“Trapped diurnal internal tides, propagating semidiurnal internal tides, and mixing estimates in the California Current System from sustained glider observations, 2006-2012”
112: 61-78. doi:10.1016/j.dsr2.2014.03.009. http://dx.doi.org/10.1016/j.dsr2.2014.03.009.
2015.
“Multivariate ocean-climate indicators (MOCI) for the central California Current: environmental change, 1990-2010.”
120: 352-369. doi:10.1016/j.pocean.2013.10.017.
2014.
“Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean”
111 (20): 7202-7207. doi:10.1073/pnas.1401887111. www.pnas.org/cgi/doi/10.1073/pnas.1401887111.
2014.
2013.
2013.